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Non-technical summary 

Due to recent developments in laboratory methods, large numbers of proteins which are present in 

the blood at low concentrations can now be measured simultaneously, a technology called 

“proteomics”. When these proteins are measured in studies of the general population, they may 

provide useful insights into how social factors “get under the skin” and affect our health. This paper 

examines whether the method used in Understanding Society (waves 2 and 3, 2010-2012) to collect 

the blood samples affects the measurement of proteins. If it does, our aim is to examine whether 

the effect is enough to mask associations between the proteins and social factors. 

In order to include as many eligible participants as possible, Understanding Society sent nurses to 

participants’ homes at a time convenient to them, where blood samples were collected and sent to a 

laboratory via the post. This meant that the samples were delayed in transit by one or more days 

before the liquid portion (serum) was extracted in the lab. This delay could affect the quality and 

protein measurements.  We measured 92 proteins related to cardiovascular and metabolic health, 

and 92 which are related to the brain. 

In this working paper, we describe the technology used to measure the proteins, and the quality 

checks we performed on the resulting proteomics dataset. We explore whether "pre-analytic 

factors", time of day of sample collection, transit delay and haemolysis (burst blood cells) have an 

effect on any of the protein measurements, and whether these effects interfere with our ability to 

find associations with other factors, using educational attainment as our example. 

We find that the dataset is of high quality, with very few measurements missing. Around a tenth of 

the proteins were defined as “low detectability” proteins, each having at least 10% of measurements 

below a recommended threshold. Transit delay was related to time of day of sample collection and 

haemolysis and has an effect on the measurements of many proteins. Educational attainment is 

associated with 127 of the 184 proteins we measured including nearly half of the “low detectability” 

proteins. Pre-analytic factors made little difference to these associations. Our findings suggest that 

the method we used to collect blood samples in Understanding Society does affect measurement, 

but it does not impact whether we observe social variation in proteomics. 



Abstract 

Proteomic methods have been developed to enable measurements of low levels of proteins in blood 

samples. In Waves 2 and 3 (2010-2012) of Understanding Society, blood samples were collected in 

participants’ homes, then posted to the laboratory and subsequently used for the measurement of 

184 proteins. It is unknown whether the delay between blood collection and laboratory processing 

compromises blood sample integrity such that genuine associations between proteins and 

demographic factors are obscured. This paper describes the protein measurements and the quality 

checks performed on them. It also describes the proteins’ associations with a range of factors, 

including pre-analytic factors (time of day of sample collection, transit delay: number of days the 

sample was in the post, haemolysis of sample) and demographic factors (age, sex, educational 

attainment, geographical region, ethnicity). A range of standard statistical tests were used. We find 

that protein measurements in the dataset are highly reproducible, with low levels of missingness. 

We observe low detectability in around one-tenth of proteins. We identify transit delay as an 

important source of variation, and we characterise the nature of its relationship to each individual 

protein. Examining educational attainment as an exemplar, we observe that of the proteins 

measured, 127 varied by educational attainment, including just under half of the proteins defined 

with low detectability. The largest associations with educational attainment are found in proteins 

previously described to be associated with cognitive function. While adjustment for pre-analytic 

factors usually improved overall model fit, association of proteins with educational attainment were 

largely unaltered. 
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1 Abstract

Proteomic methods have been developed to enable measurements of low levels of proteins in blood sam-
ples. In Waves 2 and 3 (2010-2012) of Understanding Society, blood samples were collected in participants’
homes, then posted to the laboratory and subsequently used for the measurement of 184 proteins. It is un-
known whether the delay between blood collection and laboratory processing compromises blood sample
integrity such that genuine associations between proteins and demographic factors are obscured. This pa-
per describes the protein measurements and the quality checks performed on them. It also describes the
proteins’ associations with a range of factors, including pre-analytic factors (time of day of sample collec-
tion, transit delay: number of days the sample was in the post, haemolysis of sample) and demographic
factors (age, sex, educational attainment, geographical region, ethnicity). A range of standard statistical
tests were used. We find that protein measurements in the dataset are highly reproducible, with low levels
of missingness. We observe low detectability in around one-tenth of proteins. We identify transit delay as
an important source of variation, and we characterise the nature of its relationship to each individual protein.
Examining educational attainment as an exemplar, we observe that of the proteins measured, 127 varied by
educational attainment, including just under half of the proteins defined with low detectability. The largest
associations with educational attainment are found in proteins previously described to be associated with
cognitive function. While adjustment for pre-analytic factors usually improved overall model fit, association
of proteins with educational attainment were largely unaltered.
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2 Introduction

Proteomics is the study of proteins, which are the products of gene expression, and thus important compo-
nents in the biological pathways of health, disease and behaviour. The human bloodstream contains many
proteins, including some which are purposefully released into the blood by cells to perform their biological
role (secreted), and others which are not known to function in the blood but have simply leaked into it from
other tissues. Blood levels of proteins are likely influenced by a broad range of exposures, making them
useful exploratory bio-social markers.

Understanding Society, also known as the UK Household Longitudinal Study (UKHLS) is one of several
longitudinal studies of UK residents which collects social, biological and clinical data to facilitate research
into the social to biological transitions. In Waves 2 and 3 (2010-2012) a clinical data collection took place,
giving researchers access to a range of biological and other health-related variables to study, including an-
thropometric measures such as waist circumference, physical performance measures such as lung function,
and blood-based measures such as testosterone, lipids and DNA to enable genomic analyses.

The blood samples used for protein measurements were collected by a nurse in the participants’ homes at
times that were convenient to the participant. The rationale for this mode of sample collection was that the
offer of a home visit would help to maintain response rates, especially in hard to reach groups. Samples
were posted to the laboratory for subsequent processing, i.e. separation of the liquid fraction from the cellular
fraction using a centrifuge, after which small volumes (aliquots) of cell-free liquid are dispensed into separate
tubes and frozen until they are needed. A recent systematic review suggested that standard biochemical
analytes are impacted by variations in sample handling and processing [1], here referred to as pre-analytic
factors. There is a potential for a number of pre-analytic factors to impact protein measurements [2]. In addi-
tion to pre-analytic factors that are typically examined in survey methodology, such as interviewer or nurse
effects [3], these include sample-specific factors such as time of day of sample collection, number of days in
transport (transit delay) and haemolysis of the sample. Time of day of sample collection has been associated
with a number of proteins and blood based analytes, for example inflammatory markers [4], due to diurnal
variation (typical patterns of fluctuation throughout the day). Processing delays, which occur while the sam-
ple is in transit between being posted and arriving at the laboratory, could impact protein measurements due
to ongoing biological processes [1], [2] and haemolysis [5], wherein blood cell membranes rupture, allowing
intracellular components to leak into the liquid fraction, a process which could impact protein measurements
via a number of mechanisms [5]. These intracellular components have been shown to interfere with protein
measurements under test conditions [6], [7].

The measurement of circulating proteins at scale such that there is simultaneous assessment of a number of
proteins (proteomics) is a relatively new development, with many proteins not routinely measured in popula-
tion studies. Thus, there is a lack of information on protein measurements from national studies that include
participants across the entire adult age range. It is therefore unclear how protein measurements might vary
with participant demographic characteristics such as age, sex, educational attainment, geographical region
or ethnicity. Recently, levels of proteins that reflect cardiovascular biology were shown to vary by social
position in a cohort of middle-aged Danish men and women [8]. However, the majority of studies that have
examined protein levels do not account for socio-economic factors and it is unclear whether pre-analytic
factors would serve to obscure any apparent associations.

This paper has three aims:

Firstly, to describe the quality checks performed on the dataset; secondly, to describe the relationships
between protein levels and several factors: pre-analytic (time of day of blood sampling, transit delay, and
haemolysis of the sample) and demographic (age, sex, educational attainment, geographical region and
ethnicity); and thirdly, to explore whether pre-analytic factors obscure the associations between proteins
and demographic factors.
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3 Methods

3.1 Study description

The Understanding Society study began in 2009 and recruited individuals from a nationally representative 
sample of households across the UK. It consists of subsamples, including a representative General Popu-
lation Sample (GPS), legacy households from the British Household Panel Survey (BHPS) which ran from 
1991-2009 and was absorbed into Understanding Society during Wave 2, and boost samples such as the 
Ethnic Minority Boost Sample. Information is collected from participants at one-year intervals, including their 
social and economic circumstances, their attitudes and beliefs, and their health.

In Waves 2 and 3 of the study (2010-2012), around five months after an interview, 58% (20,699) of eligible 
adult participants from the GPS and BHPS received a health assessment visit from a registered nurse. The 
nurses visited participants in their homes and, in addition to a range of noninvasive measures (such as blood 
pressure, weight, and lung function), collected non-fasting blood samples at these visits. Appointment dates 
and times were noted.

The blood samples were collected from 13,328 participants and dispatched using the postal service Royal 
Mail to the laboratory (Fisher BioServices, Bishop’s Stortford, UK), where staff recorded date of receipt and 
processed the samples, dispensing whole blood, plasma and serum into aliquots for long term storage.

Serum aliquots from 46% (6,180) of the samples in the original blood collection were sent to the Olink Pro-
teomics (hereafter shortened to “Olink”) laboratory for the measurement of 184 proteins: 4,625 participants 
from Wave 2 (GPS), and 1,555 from Wave 3 (BHPS).

For more details on the nurse health assessment, sampling and biomarkers, please see the Un-
derstanding Society user guides available on the health assessment user guides web page: https: 
//www.understandingsociety.ac.uk/documentation/health-assessment/user-guide.

3.2 Proteins measured

Laboratory analyses were performed by Olink. Proteins from two of their Target 96 panels - the 
Olink® Target 96 Cardiometabolic panel [9] and the Olink® Target 96 Neurology panel [10], together 
comprising 184 proteins - were measured. See table 1 for the full names and identifiers for each of the 
proteins.

Table 1: Proteins measured in Understanding Society
Cardiometabolic
protein ID

Full name Neurology
protein ID

Full name

ANG Angiogenin ADAM 22 Disintegrin and metalloproteinase
domain-containing protein 22

ANGPTL3 Angiopoietin-related protein 3 ADAM 23 Disintegrin and metalloproteinase
domain-containing protein 23

AOC3 Membrane primary amine oxidase Alpha-2-MRAP Alpha-2-macroglobulin
receptor-associated protein

APOM Apolipoprotein M BCAN Brevican core protein
C1QTNF1 Complement C1q tumour necrosis

factor-related protein 1
Beta-NGF Beta-nerve growth factor

C2 Complement C2 BMP-4 Bone morphogenetic protein 4
CA1 Carbonic anhydrase 1 CADM3 Cell adhesion molecule 3
CA3 Carbonic anhydrase 3 CD200 OX-2 membrane glycoprotein
CA4 Carbonic anhydrase 4 CD200R1 Cell surface glycoprotein CD200

receptor 1
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Table 1: Proteins measured in Understanding Society (continued)

Cardiometabolic
protein ID

Full name Neurology
protein ID

Full name

CCL14 C-C motif chemokine 14 CD38 ADP-ribosyl cyclase/cyclic ADP-ribose
hydrolase 1

CCL18 C-C motif chemokine 18 CDH3 Cadherin-3
CCL5 C-C motif chemokine 5 CDH6 Cadherin-6
CD46 Membrane cofactor protein CLEC10A C-type lectin domain family 10 member

A
CD59 CD59 glycoprotein CLEC1B C-type lectin domain family 1 member B
CDH1 Cadherin-1 CLM-1 CMRF35-like molecule 1
CES1 Liver carboxylesterase 1 CLM-6 CMRF35-like molecule 6
CFHR5 Complement factor H-related protein 5 CNTN5 Contactin-5
CHL1 Neural cell adhesion molecule L1-like

protein
CPA2 Carboxypeptidase A2

CNDP1 Beta-Ala-His dipeptidase CPM Carboxypeptidase M
COL18A1 Collagen alpha-1(XVIII) chain CRTAM Cytotoxic and regulatory T-cell molecule
COMP Cartilage oligomeric matrix protein CTSC Dipeptidyl peptidase 1
CR2 Complement receptor type 2 CTSS Cathepsin S
CRTAC1 Cartilage acidic protein 1 DDR1 Epithelial discoidin domain-containing

receptor 1
CST3 Cystatin-C Dkk-4 Dickkopf-related protein 4
DEFA1 Neutrophil defensin 1 DRAXIN Draxin
DPP4 Dipeptidyl peptidase 4 EDA2R Tumour necrosis factor receptor

superfamily member 27
EFEMP1 EGF-containing fibulin-like extracellular

matrix protein 1
EFNA4 Ephrin-A4

ENG Endoglin EPHB6 Ephrin type-B receptor 6
F11 Coagulation factor XI EZR Ezrin
F7 Coagulation factor VII FcRL2 Fc receptor-like protein 2
FAP Prolyl endopeptidase FAP FLRT2 Leucine-rich repeat transmembrane

protein FLRT2
FCGR2A Low affinity immunoglobulin gamma Fc

region receptor II-a
G-CSF Granulocyte colony-stimulating factor

FCGR3B Low affinity immunoglobulin gamma Fc
region receptor III-B

gal-8 Galectin-8

FCN2 Ficolin-2 GDF-8 Growth/differentiation factor 8
FETUB Fetuin-B GDNF Glial cell line-derived neurotrophic factor
GAS6 Growth arrest-specific protein 6 GDNFR-alpha-

3
GDNF family receptor alpha-3

GNLY Granulysin GFR-alpha-1 GDNF family receptor alpha-1
GP1BA Platelet glycoprotein Ib alpha chain GM-CSF-R-

alpha
Granulocyte-macrophage
colony-stimulating factor receptor
subunit alpha

ICAM1 Intercellular adhesion molecule 1 GPC5 Glypican-5
ICAM3 Intercellular adhesion molecule 3 GZMA Granzyme A
IGFBP3 Insulin-like growth factor-binding protein

3
HAGH Hydroxyacylglutathione hydrolase;

mitochondrial
IGFBP6 Insulin-like growth factor-binding protein

6
IL-5R-alpha Interleukin-5 receptor subunit alpha

IGLC2 Immunoglobulin lambda constant 2 IL12 Interleukin-12 subunit alpha and
interleukin-12 subunit beta

IL7R Interleukin-7 receptor subunit alpha JAM-B Junctional adhesion molecule B
ITGAM Integrin alpha-M KYNU Kynureninase
KIT Mast/stem cell growth factor receptor Kit LAIR-2 Leukocyte-associated

immunoglobulin-like receptor 2
LCN2 Neutrophil gelatinase-associated

lipocalin
LAT Linker for activation of T-cells family

member 1
LILRB1 Leukocyte immunoglobulin-like receptor

subfamily B member 1
LAYN Layilin

LILRB2 Leukocyte immunoglobulin-like receptor
subfamily B member 2

LXN Latexin
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Table 1: Proteins measured in Understanding Society (continued)

Cardiometabolic
protein ID

Full name Neurology
protein ID

Full name

LILRB5 Leukocyte immunoglobulin-like receptor
subfamily B member 5

MANF Mesencephalic astrocyte-derived
neurotrophic factor

LTBP2 Latent-transforming growth factor
beta-binding protein 2

MAPT Microtubule-associated protein tau

LYVE1 Lymphatic vessel endothelial hyaluronic
acid receptor 1

MATN3 Matrilin-3

MBL2 Mannose-binding protein C MDGA1 MAM domain-containing
glycosylphosphatidylinositol anchor
protein 1

MEGF9 Multiple epidermal growth factor-like
domains protein 9

MSR1 Macrophage scavenger receptor types I
and II

MET Hepatocyte growth factor receptor N-CDase Neutral ceramidase
MFAP5 Microfibrillar-associated protein 5 N2DL-2 UL16-binding protein 2
NCAM1 Neural cell adhesion molecule 1 NAAA N-acylethanolamine-hydrolyzing acid

amidase
NID1 Nidogen-1 NBL1 Neuroblastoma suppressor of

tumourigenicity 1
NOTCH1 Neurogenic locus notch homolog

protein 1
NCAN Neurocan core protein

NRP1 Neuropilin-1 NEP Neprilysin
OSMR Oncostatin-M-specific receptor subunit

beta
NMNAT1 Nicotinamide/nicotinic acid

mononucleotide adenylyltransferase 1
PAM Peptidyl-glycine alpha-amidating

monooxygenase
Nr-CAM Neuronal cell adhesion molecule

PCOLCE Procollagen C-endopeptidase enhancer
1

NRP2 Neuropilin-2

PLA2G7 Platelet-activating factor
acetylhydrolase

NTRK2 BDNF/NT-3 growth factors receptor

PLTP Phospholipid transfer protein NTRK3 NT-3 growth factor receptor
PLXNB2 Plexin-B2 PDGF-R-alpha Platelet-derived growth factor receptor

alpha
PRCP Lysosomal Pro-X carboxypeptidase PLXNB1 Plexin-B1
PROC Vitamin K-dependent protein C PLXNB3 Plexin-B3
PRSS2 Trypsin-2 PRTG Protogenin
PTPRS Receptor-type tyrosine-protein

phosphatase S
PVR Poliovirus receptor

QPCT Glutaminyl-peptide cyclotransferase RGMA Repulsive guidance molecule A
REG1A Lithostathine-1-alpha RGMB Repulsive guidance molecule B
REG3A Regenerating islet-derived protein

3-alpha
ROBO2 Roundabout homolog 2

SAA4 Serum amyloid A-4 protein RSPO1 R-spondin-1
SELL L-selectin SCARA5 Scavenger receptor class A member 5
SERPINA5 Plasma serine protease inhibitor SCARB2 Lysosome membrane protein 2
SERPINA7 Thyroxine-binding globulin SCARF2 Scavenger receptor class F member 2
SOD1 Superoxide dismutase [Cu-Zn] sFRP-3 Secreted frizzled-related protein 3
SPARCL1 SPARC-like protein 1 Siglec-9 Sialic acid-binding Ig-like lectin 9
ST6GAL1 Beta-galactoside

alpha-2;6-sialyltransferase 1
SIGLEC1 Sialoadhesin

TCN2 Transcobalamin-2 SKR3 Serine/threonine-protein kinase
receptor R3

TGFBI Transforming growth
factor-beta-induced protein ig-h3

SMOC2 SPARC-related modular
calcium-binding protein 2

TGFBR3 Transforming growth factor beta
receptor type 3

SMPD1 Sphingomyelin phosphodiesterase

THBS4 Thrombospondin-4 SPOCK1 Testican-1
TIE1 Tyrosine-protein kinase receptor Tie-1 THY 1 Thy-1 membrane glycoprotein
TIMD4 T-cell immunoglobulin and mucin

domain-containing protein 4
TMPRSS5 Transmembrane protease serine 5

TIMP1 Metalloproteinase inhibitor 1 TN-R Tenascin-R
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Table 1: Proteins measured in Understanding Society (continued)

Cardiometabolic
protein ID

Full name Neurology
protein ID

Full name

TNC Tenascin TNFRSF12A Tumour necrosis factor receptor
superfamily member 12A

TNXB Tenascin-X TNFRSF21 Tumour necrosis factor receptor
superfamily member 21

UMOD Uromodulin UNC5C Netrin receptor UNC5C
VASN Vasorin VWC2 Brorin
VCAM1 Vascular cell adhesion protein 1 WFIKKN1 WAP Kazal immunoglobulin Kunitz and

NTR domain-containing protein 1

Figure 1: Samples
derived from Un-
derstanding Society
blood collection
at waves 2 and 3
(2010-2012)

Proteins were measured using Olink’s Proximity Extension Assay (PEA), in which 
liquid biological samples are added to reagents that contain, for each protein target, 
a pair of oligonucleotide-linked antibodies which bind to the protein. This 
binding brings the two oligonucleotides into sufficiently close proximity for a 
real-time qPCR reaction to take place, yielding a numerical value (known as the 
“Ct value”) which corresponds to the amount of protein in the sample.

The assay is performed one panel (92 proteins) at a time, in plates which 
contain batches of up to 88 participant samples, plus two external control 
samples to monitor assay performance, and six other control samples used 
to calibrate and normalize the measurements. There are also four inter-
nal controls in the reagents that are added to each sample, which monitor 
the performance at different stages of the process. In addition to standard 
in-house quality control procedures, reproducibility was monitored by run-
ning 70 participant samples in duplicate, i.e. twice, with one replicate in 
one plate and another replicate in a different plate, to which Olink were 
“blinded”. For more information on Olink’s QC procedure, see their website 
(https://olink.com/faq/how-is-quality-control-of-the-data-performed/). Quality con-
trol (QC) checks and data pre-processing were performed by Olink. Missing 
measurements were assigned as “sample failed”, “assay failed” or “datapoint failed” 
by Olink.

The Ct value resulting from the qPCR reaction is corrected for inter-plate 
variability (or “batch effects”) and normalized against one of the internal 
controls to give an arbitrary unit “NPX” (Normalized Protein eXpression) 
wherein one unit increase reflects a doubling in concentration. More 
information is available at Olink’s website: https://olink.com/faq/what-is-
npx/.

For more information on the biological function of each protein, please 
see the “Proteins” section of the Understanding Society proteomics 
user guide available on the health assessment user guides web page: 
https://www.understandingsociety.ac.uk/documentation/health-assessment/user-
guide.

3.3 Pre-analytic factors

Nurses recorded the time of day of blood sampling; for analytic purposes, this was collapsed into a three level
“time of day” variable (“morning”: before midday, “afternoon”: midday until 16:59, and “evening”: 17:00 until
midnight). “Transit delay”, a continuous variable reflecting the difference, in whole days, between “interview
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date” and “lab date” was calculated from dates recorded by the nurse and laboratory. Any values below 1
were set to missing. Transit delay squared was derived by exponentiating this variable to examine potential
non-linear associations. Haemolysis of the sample was noted by the testing laboratory during previous
biomarker testing (Newcastle upon Tyne Hospitals NHS Foundations Trust (NUTH)).

3.4 Demographic variables

Age and sex were recorded during the nurse visit. Age was scaled and centered for a mean of 0 and
a standard deviation of 1. The scaled age was then exponentiated to derive a scaled-age-squared
variable. Male is coded as “1” in the dataset and Female is coded as “2”. Educational attainment was
classified as a six-level factor based on highest qualification: “Degree”, “Other higher degree”, “A-level
etc”, “GCSE etc”, “Other qualification” and “No qualification”. Geographical region was measured using
the Office for National Statistics (ONS) government office region category (https://www.ons.gov.uk/
methodology/geography/ukgeographies/administrativegeography/england), extended to include Wales,
Scotland and Northern Ireland. Ethnic group was measured with the ONS 2011 Census 17-category, self-
reported ethnic group question (https://www.understandingsociety.ac.uk/documentation/mainstage/dataset-
documentation/search/datafile/xwavedat) and converted to a five-level factor: “Asian”, “Black”, “Mixed”,
“Other” and “White”, as per Easterbrook et al (2019) [11].

3.5 Statistical analysis

Unpaired t-tests and chi-square tests were used to assess whether the Understanding Society proteomics
subsample differed significantly from the non-proteomics blood subsample in terms of time of day, transit
delay, haemolysis, age, sex, educational attainment, geographical region and ethnicity. ANOVA was used
to assess whether transit delay was associated with time of day, haemolysis, sex, educational attainment,
geographical region and ethnicity, and linear regression was used to assess whether it was associated with
age. An alpha of 0.05 was used to indicate significance.

For the 70 duplicated samples, we measured the reproducibility of protein measurements in accordance
with Olink [12] using Pearson’s correlation coefficient. Values should be positively correlated, exceeding
0.8, i.e. having a “very strong” correlation [13] .

In all of the following analyses, a Bonferroni-adjusted significance threshold of 0.05/184 was used in order
to ensure the chance of inferring that at least one protein is associated remains below 0.05, despite 184
multiple comparisons. Samples with a transit delay greater than one week were excluded.

For each protein, GAMLSS (Generalised Additive Models for Location Scale and Shape) and the likelihood
ratio test were used to explore the relationship between transit delay and protein measurements. GAMLSS
can be used to describe how the mean and variance of a variable (in this case, a protein) varies according
to another variable (in this case, transit delay) by estimating values for “mu” (central tendency, mean) and
“sigma” (spread, variance). In order to detect potential non-linear relationships, transit delay was synthe-
sized into multiple dummy variables. Pairwise comparison of models that include decreasing numbers of
dummy variables were performed using stepwise backward model selection: for each protein, “model 1”
was specified with dummy variables for 2, 3, 4, 5, 6, and 7 days, as explanatory for both mu and sigma.
“Model 2” was similar except the dummy variable for “2” was removed, effectively merging delays of 1 and 2
days. A likelihood ratio test was performed on the two models, effectively testing whether or not the merging
of the first two delay lengths made a significant difference to the estimate of spread, compared to treating
them as two separate levels. The GAMLSS coefficients were used to generate an estimated effect size
corresponding to a further day’s increase in delay (i.e. 2 days) “% change in standard deviation (SD)”:

100 * ((SDTD2 – SDTD1) / SDTD1)
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where SDTD1 is the exponent of the sigma coefficient for the intercept, and SDTD2 is the exponent of the sum
of the sigma coefficients for both the intercept and the dummy variable for 2 days’ delay. This approach was
repeated, each time removing another dummy variable to effectively merge the lowest few delay lengths.

In the remaining analyses, all continuous variables (protein NPX values, transit delay, transit delay squared,
age and age-squared) were scaled and centered for a mean of 0 and a standard deviation of 1.

For each protein, bivariate analyses (t-test, analysis of variance (ANOVA), linear regression) and multivari-
ate regression analyses were conducted to measure their association with a range of factors. T-tests were
conducted to examine haemolysis and sex. Effect size is calculated as Cohen’s d (mean difference/SD).
Bivariate one-way ANOVAs were conducted for categorical factors: time of day, educational attainment,
government office region, and ethnicity. The effect size reported is eta squared (variance explained). Lin-
ear regression analyses were used to examine transit delay, transit delay squared, age and age squared
(for the squared variables, the linear counterpart was included as the sole covariate). We report the beta
coefficient.

To assess the importance of adjustment for pre-analytic factors, likelihood ratio tests were used to compare
bivariate linear regressions of the proteins and demographic variables with corresponding multivariate re-
gressions (i.e. adjusted for transit delay and transit delay squared). We report the p value from the likelihood
ratio tests, and the increase in R-squared as a percent of the total variance. To gauge whether adjustment
for pre-analytic factors changes the magnitude and significance of proteins’ associations with educational
attainment, we repeated these analyses using ANOVA and ANCOVA. The measures of variance explained
for linear regression (R squared) and ANOVA (eta squared) were identical (Pearson’s correlation coefficient
>0.99) but ANOVA benefits from providing a single p value for the educational attainment term. When spec-
ifying the ANCOVA models, educational attainment was ordered last in order to examine its marginal effect.
To obtain unfixed confidence intervals, a two-sided alternative hypothesis was used.
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4 Results

4.1 Participant characteristics

Pre-analytic factors and participant characteristics are shown in table 2. In the subsample of blood used
for proteomic analyses, time of day of sample collection was significantly different, transit delay was signif-
icantly shorter, and haemolysis was around half as common, compared to the non-proteomics subsample.
Participants with proteomics measurements were also older and more female, and differed according to geo-
graphical regions and educational attainment, when compared to the non-proteomics subsample. However,
the proportions of participants in each of the ethnic groups was not significantly different.

4.2 Proteomic dataset quality checks

The duplicated samples produced reproducible measurements: Pearson’s correlation coefficients were all
very strong, falling between 0.86 – 1.0 for each duplicate. No samples failed in both panels. 114 samples
(1.8%) failed in one panel: 103 (1.7%) failed in the neurology panel, whereas only 11 (0.2%) failed in the
cardiometabolic panel. Therefore, only 0.9% of all datapoints were removed due to sample failure. Missing
values not due to sample failure are extremely rare (0.03% of datapoints) and the vast majority result from
assay failure in one protein, DEFA1, across four plates (341 datapoints; 5.5% of DEFA1 values). Only 16
values are missing due to “datapoint failure”. 93.3% of datapoints across the dataset fell above the limit of
detection for the corresponding protein. 146/184 proteins have a below-LOD rate less than 0.5%. 18/184
proteins (9.8%) have a high below-LOD rate (>=10%) and thus are defined as “low detectability” proteins.
Thirteen of these are from the cardiometabolic panel, and five are from the neurology panel (table 3). 96.0%
of the below-LOD values in the dataset are from these low detectability proteins.

The distributions of NPX values for each protein are all broadly normal, however some proteins appear
to have slight skew and/or a bimodal distribution. For boxplots, see figures 2 and 3, and for histograms
and q-q plots, see the proteomics user guide’s “Proteins” section, available on the Understanding Society
health assessment user guides web page: https://www.understandingsociety.ac.uk/documentation/health-
assessment/user-guide.
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Table 2: Comparison of pre-analytic factors and characteristics of participants that provided blood samples
with and without protein data

In protein sample In blood sample (but not protein)

N=6,180 N=7,095
Pre-analytic factors 

Time of day p=<0.001 ***

Morning 1,957 (31.7) 2,152 (30.3)
2,261 (36.6) 2,473 (34.9)
1,962 (31.7) 2,470 (34.8)

2.5 (1.6), 1-32 2.6 (1.6), 1-45 p=<0.001 ***
182 (3.0) 409 (6.0) p=<0.001 ***

53.1 (17.7), 16-102 50.9 (16.7), 16-99 p=<0.001 ***
2,453 (36.7) 3,474 (49.0) p=<0.001 ***

Afternoon
Evening

Transit delay (days) 
Haemolysis

Demographic factors

Age (y)
Men
Educational attainment p=<0.001 ***

Degree 1,320 (21.6) 1,549 (22.1)
Other higher degree 779 (12.8) 900 (12.8)
A-levels, etc 1,156 (18.9) 1,353 (19.3)
GCSEs, etc 1,216 (19.9) 1,526 (21.7)
Other qualification 667 (10.9) 787 (11.2)
No qualifications 968 (15.9) 911 (13.0)

Region p=<0.001 ***

North East 317 (5.1) 342 (4.8)
North West 699 (11.3) 846 (11.9)
Yorkshire and the Humber 562 (9.1) 627 (8.8)
East Midlands 563 (9.1) 560 (7.9)
West Midlands 520 (8.4) 598 (8.4)
East of England 558 (9.0) 746 (10.5)
London 400 (6.5) 515 (7.3)
South East 874 (14.2) 1,047 (14.8)
South West 649 (10.5) 712 (10.0)
Wales 501 (8.1) 463 (6.5)
Scotland 533 (8.6) 633 (8.9)
Northern Ireland 0 (0.0) 0 (0.0)

Ethnicity p=0.53

Asian 155 (2.5) 188 (2.7)
Black 61 (1.0) 68 (1.0)
Mixed 39 (0.6) 60 (0.9)
Other Ethnicity 15 (0.2) 23 (0.3)
White 5,910 (95.6) 6,745 (95.1)

Values shown are either ’mean (SD), range’ or ’n (%)’
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Table 3: ’Low detectability’ proteins

Protein Below LOD (%) Panel
CES1 54.0 cardiometabolic
DEFA1 37.2 cardiometabolic
FAP 93.8 cardiometabolic
GNLY 17.7 cardiometabolic
IL7R 23.0 cardiometabolic
ITGAM 79.4 cardiometabolic
LTBP2 98.7 cardiometabolic
MFAP5 67.4 cardiometabolic
PLA2G7 74.5 cardiometabolic
PLTP 66.8 cardiometabolic
REG3A 99.4 cardiometabolic
SOD1 21.3 cardiometabolic
UMOD 74.6 cardiometabolic
Beta-NGF 99.7 neurology
G-CSF 19.8 neurology
GDNF 88.1 neurology
LXN 85.5 neurology
MAPT 99.8 neurology
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Figure 2: Cardiometabolic panel protein distributions
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Figure 3: Neurology panel protein distributions

For each protein, we identified the minimum number of days’ transit delay which introduces a statistically
significant change in spread, or standard deviation - see table 4 for the number of proteins affected by each
delay length. Some of the statistically significant changes in spread were arguably of small size, so we also
provide counts from analyses that only take into account changes in spread that are larger than 10% or
25%. For 51 proteins, there was no significant association between transit delay and spread. At the 10%
threshold this increases to 108, and at the 25% threshold this increases to 156. Appendix 1 includes a table
listing the proteins in each cell of table 4, along with boxplots showing the spread of four example proteins,
including one which appears to be influenced by outliers.

14



Table 4: Transit delay cutoffs affecting spread: protein counts

n proteins affected
Minimum transit
delay affecting
spread (days)

No SD % change
cutoff

10% SD change
cutoff

25% SD change
cutoff

2 102 33 8
3 14 9 2
4 13 8 0
5 3 14 5
6 0 7 2
7 1 5 11
None (i.e. SD is
stable)

51 108 156

4.3 Association of protein levels with pre-analytic and demographic covariates

Table 5 contains results for unadjusted T tests, ANOVA and regression analyses of pre-analytic and demo-
graphic variables, and table 6 contains results from likelihood ratio tests comparing the unadjusted analyses
of demographic variables with those adjusted for pre-analytic factors transit delay and transit delay squared.

4.3.1 Unadjusted analyses of protein levels

Table 5: Table of protein associations with pre-analytic and demo-
graphic factors

Tim
e_of_day

Transit_delay

Transit_delay_squared

H
aem

olysis

Age

Age_squared

Sex

Education

R
egion

Ethnicity

ADAM_22 *** *** *** *** *** ***
ADAM_23 *** *** *** *** ***
Alpha_2_MRAP *** *** *** *** ** *
ANG *** * *** **
ANGPTL3 *** ** *** *** *** *** ***
AOC3 *** *** *** **
APOM * * *** *
BCAN *** ** *** *** *** ***
Beta_NGF ***
BMP_4 *** *** **
C1QTNF1 *** *** *** ***
C2 *** *** *** ** ***
CA1 *** *** *** *** ***
CA3 *** *** *** *** ** *** ***
CA4 *** *** *** ***
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Table 5: Table of protein associations with pre-analytic and demo-
graphic factors (continued)

Tim
e_of_day

Transit_delay

Transit_delay_squared

H
aem

olysis

Age

Age_squared

Sex

Education

R
egion

Ethnicity

CADM3 *** *** *** *** ***
CCL14 *** *** *** *** *** *** ***
CCL18 *** * *** ** *** ***
CCL5 *** *** *** ** ***
CD200 *** *** *** ***
CD200R1 *** *** ***
CD38 *** *** *** *** *** *** ***
CD46 *** *** *** *** ***
CD59 *** *** *** *** *** *** ***
CDH1 *** ** *** *** *** ***
CDH3 *** * *** *** ***
CDH6 * *** *** *** *** **
CES1 *** *** *** *** *** **
CFHR5 ***
CHL1 ***
CLEC10A *** *** ***
CLEC1B *** *** *** *** ***
CLM_1 *** *** *** *** *** *** *** ***
CLM_6 * *** *** *** ** *** ***
CNDP1 *** ** *** *** * ***
CNTN5 *** *** ***
COL18A1 *** *** *** *** *** *** ***
COMP *** *** *** *** **
CPA2 *** *** ***
CPM *** *** *** *** *** ***
CR2 *** *** *** *** *** *** *
CRTAC1 *** ** *** ***
CRTAM *** *** *** ** ***
CST3 *** *** *** *** ***
CTSC *** *** *** *** * *** *** *
CTSS *** *** *** *** *** **
DDR1 ** *** *** ** *** ***
DEFA1 *** *** *** *** *** ***
Dkk_4 *** *** *** *** ***
DPP4 *** *** *
DRAXIN *** *** *** *** ***
EDA2R *** *** *** *** *** *** *** ***
EFEMP1 *** ** *** *** ***
EFNA4 ** *** *** *** *** ***
ENG ** ** ***
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Table 5: Table of protein associations with pre-analytic and demo-
graphic factors (continued)

Tim
e_of_day

Transit_delay

Transit_delay_squared

H
aem

olysis

Age

Age_squared

Sex

Education

R
egion

Ethnicity

EPHB6 *** ** *** *** ** ***
EZR *** *** *** *** ***
F11 *** ***
F7 *** *** *** * *** ***
FAP *
FCGR2A *** *** *** ***
FCGR3B *** *** ** ***
FCN2 ** *** **
FcRL2 ** *** * ***
FETUB *** * *** *** **
FLRT2 *** *** *** *** ***
G_CSF *** *** ** ***
gal_8 *** *** *** * ***
GAS6 *** *** ** ***
GDF_8 *** *** *** *** *** *** *
GDNF *** *** * *** *** *** **
GDNFR_alpha_3 *** *** *** ***
GFR_alpha_1 *** *** *** *** *** ***
GM_CSF_R_alpha ** * *
GNLY *** *** * ***
GP1BA *** *** *** ***
GPC5 ** *** *** ** ***
GZMA *** *** *** *** * *
HAGH *** *** * *** *** ***
ICAM1 *** *** ***
ICAM3 *** ***
IGFBP3 *** *** ** *** *** *** *
IGFBP6 *** * *** *** *** ***
IGLC2 *** * *** *** *** ***
IL_5R_alpha *** *** ** *** *** *** ***
IL12 ** *** *** *** *** *
IL7R *** *** *
ITGAM *** *** *** *** *** ***
JAM_B *** ** * *** *** *** ***
KIT *** *** *** *** *** ***
KYNU *** *** * *** *** *** *** ***
LAIR_2 * *** *** ***
LAT *** *** ** *** *** *** **
LAYN *** * *** *** *** ***
LCN2 *** *** *** *** *** ***
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Table 5: Table of protein associations with pre-analytic and demo-
graphic factors (continued)

Tim
e_of_day

Transit_delay

Transit_delay_squared

H
aem

olysis

Age

Age_squared

Sex

Education

R
egion

Ethnicity

LILRB1 ** ** *** ***
LILRB2 *** ** *** ***
LILRB5 *** **
LTBP2 *** *** ** ***
LXN *** *** *** *
LYVE1 *** ***
MANF *** *** *** ***
MAPT *** *
MATN3 *** *** *** ***
MBL2 ** *** *** *
MDGA1 *** *** ***
MEGF9 *** * *** * ***
MET *
MFAP5 *** *** *** *** *** ***
MSR1 *** * *** *** ***
N_CDase *** *** *** ***
N2DL_2 *** *** *** *** *** ***
NAAA *** *** * *** * *** ***
NBL1 *** **
NCAM1 *** *** ***
NCAN * *** *** *** *** ***
NEP *** *** *** *
NID1 * *** *** ***
NMNAT1 *** *** *** *** ***
NOTCH1 *** **
Nr_CAM *** *** ***
NRP1 ** *** *** *** ***
NRP2 *** ***
NTRK2 *** *** *** ***
NTRK3 * *** *** *** ***
OSMR *** *** * ***
PAM *** *** *
PCOLCE *** ** *** *** ***
PDGF_R_alpha *** *** *** *** *** ***
PLA2G7 *** *** ***
PLTP *** ***
PLXNB1 *** *** **
PLXNB2 *** *** *** ***
PLXNB3 *** *** *** *** *** *** *** **
PRCP *** *** * *** *** ***
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Table 5: Table of protein associations with pre-analytic and demo-
graphic factors (continued)

Tim
e_of_day

Transit_delay

Transit_delay_squared

H
aem

olysis

Age

Age_squared

Sex

Education

R
egion

Ethnicity

PROC *** *** ***
PRSS2 * *** *** *** ***
PRTG *** ***
PTPRS *** * *** ***
PVR *** *** * ** ***
QPCT *** *** *** *** **
REG1A *** *** *** *** *** ***
REG3A *** *** ***
RGMA *** *** *** *** *** *** ***
RGMB *** *** *** *** ***
ROBO2 *** *** *** ***
RSPO1 *** *** *** * *** *** *** *
SAA4 *** ** *** *** **
SCARA5 *** *** *** *** ***
SCARB2 *** *** *** *** *** ***
SCARF2 *** *** *** *** *** ***
SELL *** *** *** *** *** ***
SERPINA5 * *** *** *** **
SERPINA7 ** *** ***
sFRP_3 *** *** *** *** *** ***
Siglec_9 *** ** *** ** ** ***
SIGLEC1 *** *** *** ***
SKR3 *** *** *** *** ***
SMOC2 *** *** *** *** ***
SMPD1 *** *** *** ***
SOD1 *** *** *** *** *** ***
SPARCL1 ** *** ** *** ***
SPOCK1 *** *** *** *** ***
ST6GAL1 ** *** ***
TCN2 ** *** ** ** ***
TGFBI ** * ***
TGFBR3 *** *** *** *** *** ***
THBS4 *** *** ***
THY_1 *** *** *** *** *** ***
TIE1 **
TIMD4 *** *** * * ***
TIMP1 * *** * *** *** *
TMPRSS5 *** ***
TN_R *** *** * ***
TNC ** *** *** **
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Table 5: Table of protein associations with pre-analytic and demo-
graphic factors (continued)

Tim
e_of_day

Transit_delay

Transit_delay_squared

H
aem

olysis

Age

Age_squared

Sex

Education

R
egion

Ethnicity

TNFRSF12A *** *** *** *** *** *** ***
TNFRSF21 *** *** *** *** **
TNXB *** *** * *** *** ***
UMOD *** *** *** *** ***
UNC5C *** *** *** *** *** *** ***
VASN * *** *** *** ***
VCAM1 *** *** *** *** *** ***
VWC2 *** *** *** *** *** *** *** *** *** ***
WFIKKN1 ** *** *** *** ***
* p<0.05/184, ** p<0.01/184, *** p<0.001/184 from T tests, ANOVA and regres-
sion analyses of pre-analytic and demographic variables. Each row represents
one protein, and each column represents a factor. Effect sizes are represented
in colour form, with white corresponding to 0. There are three effect size scales:
one for T-tests (haemolysis and sex), one for ANOVAs (time of day, educational
attainment, geographical region and ethnicity), and one for linear regressions
(transit delay, transit delay squared, age and age squared). The T test scale
ranges from dark blue for negative Cohen’s d values (mean difference in
standardized NPX units; minimum value is -0.73) to dark red for positive
values (capped at 2.00 due to high values of Cohen’s d for six proteins’
association with haemolysis - CA1 (3.4), CA3 (3.7), CD59 (2.1), HAGH (3.1),
LXN (5.8), SOD1 (3.4) -, which would have skewed the colour scale leaving
most cells almost white). Red indicates higher levels in females compared to
males, or higher levels in haemolysed samples compared to non-haemolysed
samples. For ANOVAs, darker grey shading rep-resents a larger value (min
5.7e-05, max 0.14). The regression coefficient scale ranges from dark blue for
negative beta coefficients (minimum -0.54) to dark red for positive ones
(maximum 0.77). n ranged from 5,648 to 6,050

In the unadjusted analyses, some factors are associated with the majority of the 184 proteins: age (154;
164 including age squared), educational attainment (127), time of day (126), sex (121) and transit delay
(106; 118 including transit delay squared). Other factors are associated with fewer proteins: haemolysis
(27), ethnicity (53) and government office region (20).

All of the haemolysis-associated proteins were associated with transit delay and/or transit delay squared.
Of the 18 “low detectability” proteins, an association with educational attainment was detected for eight.
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4.3.2 Associations between transit delay and other variables

Time of day was significantly associated with transit delay (p = 1.69e-33), as was haemolysis (p = 3.17e-
201), age (beta coefficient = -0.084, p = 4.93e-11), education (p = 7.50e-04) and government office region
(p = 1.99e-13). Neither sex nor ethnicity were associated with transit delay.

4.3.3 Adjusted analyses of protein levels

Table 6: Table of unadjusted versus adjusted model comparisons
for protein-demographic factor associations

Age_adjusted

Age_squared_adjusted

Sex_adjusted

Education_adjusted

R
egion_adjusted

Ethnicity_adjusted

ADAM_22 * ***
ADAM_23
Alpha_2_MRAP *** *** *** *** *** ***
ANG
ANGPTL3 *** *** *** ***
AOC3
APOM * ** **
BCAN *** *** *** ***
Beta_NGF *** *** *** *** *** ***
BMP_4
C1QTNF1
C2 *** *** *** *** *** ***
CA1 *** *** *** *** *** ***
CA3 *** *** *** *** *** ***
CA4 *** *** *** *** *** ***
CADM3
CCL14 *** *** *** *** *** ***
CCL18 *** *** ***
CCL5 *** *** *** *** *** ***
CD200 *** ***
CD200R1 *** *** *** *** *** ***
CD38 *** *** *** *** *** ***
CD46 *** *** *** *** *** ***
CD59 *** *** *** *** *** ***
CDH1 *** * *** ***
CDH3 *** ** *** ** ** ***
CDH6 *** *** *** *** *** ***
CES1 *** *** *** *** *** ***
CFHR5
CHL1
CLEC10A *** ***
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Table 6: Table of unadjusted versus adjusted model comparisons
for protein-demographic factor associations (continued)

Age_adjusted

Age_squared_adjusted

Sex_adjusted

Education_adjusted

R
egion_adjusted

Ethnicity_adjusted

CLEC1B *** *** *** *** *** ***
CLM_1 *** *** *** *** *** ***
CLM_6 *** *** *** *** *** ***
CNDP1 ** * *
CNTN5
COL18A1 *** *** *** *** *** ***
COMP *** ***
CPA2 *** *** *** *** *** ***
CPM *** ***
CR2 *** *** *** ***
CRTAC1 * *
CRTAM *** ***
CST3 ** * *
CTSC *** *** *** *** *** ***
CTSS *** *** *** *** *** ***
DDR1 *** *** *** *** *** ***
DEFA1 *** *** *** *** *** ***
Dkk_4 *** ***
DPP4
DRAXIN *** *** *** *** *** ***
EDA2R *** *** *** *** ***
EFEMP1 *** *** ***
EFNA4 *** *** *** *** *** ***
ENG * * * ** * **
EPHB6 *** *** ** *** ** **
EZR *** *** *** *** *** ***
F11
F7 *** *** *** *** *** ***
FAP
FCGR2A *** *** *** *** *** ***
FCGR3B *** *** *** *** *** ***
FCN2 *
FcRL2 *** *** * ** * *
FETUB *** *** *** ***
FLRT2 *** *** *** *** *** ***
G_CSF *** *** *** *** *** ***
gal_8 *** *** *** *** *** ***
GAS6
GDF_8 ** ** *** *** *** ***
GDNF *** *** *** *** *** ***
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Table 6: Table of unadjusted versus adjusted model comparisons
for protein-demographic factor associations (continued)

Age_adjusted

Age_squared_adjusted

Sex_adjusted

Education_adjusted

R
egion_adjusted

Ethnicity_adjusted

GDNFR_alpha_3 *** ***
GFR_alpha_1 ** * **
GM_CSF_R_alpha
GNLY *** *** *** *** *** ***
GP1BA *** *** *** *** *** ***
GPC5 *** *** *** *** *** ***
GZMA *** *** *** *** *** ***
HAGH *** *** *** *** *** ***
ICAM1
ICAM3 *** *** *** *** *** ***
IGFBP3 *** *** *** *** *** ***
IGFBP6 *** *** ***
IGLC2
IL_5R_alpha *** *** *** ***
IL12 ** *** *
IL7R *** *** *** *** *** ***
ITGAM *** *** *** *** *** ***
JAM_B *** *** ***
KIT *** *** *** *** *** ***
KYNU *** *** *** *** *** ***
LAIR_2 *** *** *
LAT *** *** *** *** *** ***
LAYN *** ***
LCN2 *** *** *** *** *** ***
LILRB1 *** *** ** *** * *
LILRB2 *** *** *** *** *** ***
LILRB5
LTBP2
LXN *** *** *** *** *** ***
LYVE1 * **
MANF *** *** *** *** *** ***
MAPT *** *** *** *** *** ***
MATN3 *** ** *** *** *** ***
MBL2
MDGA1
MEGF9 * *
MET
MFAP5 *** *** *** ***
MSR1 *** ***
N_CDase
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Table 6: Table of unadjusted versus adjusted model comparisons
for protein-demographic factor associations (continued)

Age_adjusted

Age_squared_adjusted

Sex_adjusted

Education_adjusted

R
egion_adjusted

Ethnicity_adjusted

N2DL_2 *** *** *** *** *** ***
NAAA *** *** *** *** *** ***
NBL1 *** *** *** *** *** ***
NCAM1 *
NCAN *** *** * ** * *
NEP *** *** ** *** ** ***
NID1
NMNAT1 *** *** *** *** *** ***
NOTCH1 *** *** *** *** *** ***
Nr_CAM *** *** *** *** *** ***
NRP1
NRP2 *** *** *** *** *** ***
NTRK2 *** *** *** *** *** ***
NTRK3 *** *** * *
OSMR
PAM * *
PCOLCE *** ** **
PDGF_R_alpha *** *** ** *** *** ***
PLA2G7 *** *** *** *** ** ***
PLTP
PLXNB1 *** *** *** *** *** ***
PLXNB2 ** **
PLXNB3 *** *** *** *** *** ***
PRCP *** *** *** *** *** ***
PROC
PRSS2 * ** *** *** *** ***
PRTG * **
PTPRS * ** ** ** **
PVR
QPCT *** *** *** *** *** ***
REG1A *** *** *** ***
REG3A
RGMA *** *** *** *** *** ***
RGMB *** ***
ROBO2
RSPO1 *** *** *** *** *** ***
SAA4
SCARA5 *** * **
SCARB2 *** *** *** *** *** ***
SCARF2 * ** *** *** ***
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Table 6: Table of unadjusted versus adjusted model comparisons
for protein-demographic factor associations (continued)

Age_adjusted

Age_squared_adjusted

Sex_adjusted

Education_adjusted

R
egion_adjusted

Ethnicity_adjusted

SELL * * *** *** *** ***
SERPINA5 *** *** *** *** *** ***
SERPINA7 ** ** * *
sFRP_3 *** * ** ***
Siglec_9 *** *** *** *** *** ***
SIGLEC1
SKR3 * **
SMOC2 ** ***
SMPD1
SOD1 *** *** *** *** *** ***
SPARCL1
SPOCK1 *** *** *** *** *** ***
ST6GAL1 *** *** ** *** ** **
TCN2
TGFBI
TGFBR3 *** * *** ***
THBS4
THY_1 *** *** *** *** *** ***
TIE1
TIMD4
TIMP1 *** ***
TMPRSS5 *** ***
TN_R *
TNC *
TNFRSF12A *** *** *** *** *** ***
TNFRSF21 ** ***
TNXB * * *** *** *** ***
UMOD
UNC5C *** *** ***
VASN
VCAM1
VWC2 *** *** *** *** *** ***
WFIKKN1 *** *** *** *** *** ***
* p<0.05/184, ** p<0.01/184, *** p<0.001/184 from likelihood ratio tests com-
paring unadjustedmodels vs models adjusting for linear and non-linear tran-
sit delay. Each row represents one protein, and each column represents
a factor. Significance indicates that pre-analytic factors contributed to the
model. Change in R-squared, i.e. the extra % of the variance which is
explained by adding pre-analytic covariates is represented in colour form,
where darker grey shading represents a larger value (min 0.0006, max
37.4). n ranged from 5,648 to 5,979.
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For 142 proteins, adjustment for pre-analytic factors improved model fit for at least one of the variables
studied. For 88 proteins, model fit was improved across all six variables. Proteins for which this adjust-
ment made no improvements were: ADAM_23, ANG, AOC3, BMP_4, C1QTNF1, CADM3, CFHR5, CHL1,
CNTN5, DPP4, F11, FAP, GAS6, GM_CSF_R_alpha, ICAM1, IGLC2, LILRB5, LTBP2, MBL2, MDGA1,
MET, N_CDase, NID1, NRP1, OSMR, PLTP, PROC, PVR, REG3A, ROBO2, SAA4, SIGLEC1, SMPD1,
SPARCL1, TCN2, TGFBI, THBS4, TIE1, TIMD4, UMOD, VASN and VCAM1. Addition of pre-analytic co-
variates improved model fit for educational attainment in 40 of the 57 proteins not associated with education
in the unadjusted analyses. In an ANCOVA adjusted for pre-analytic factors, the association with educational
attainment was replicated for 124 proteins, and a further seven proteins crossed our nominal threshold for
significance (MAPT, ICAM3, LYVE1, MDGA1, CFHR5, CTSC and CCL5), while three proteins became non-
significant (IL7R, APOM and GPC5). Effect sizes were broadly very similar as shown in figs 4-5 (top 92
proteins by effect size) and appendix 2, figs 7-8 (bottom 92 proteins).
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Figure 4: Associations between proteins and educational attainment
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Figure 5: Associations between proteins and educational attainment
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5 Discussion

We describe a high quality resource with low levels of missingness in the protein measurements. The proto-
col used for venous sample collection is considered sub-optimal but the association of themajority of proteins
with demographic factors, including social position as measured by educational attainment, suggests that
most proteins are robust to our collection protocol. We provide an overview of the key demographic and
pre-analytic correlates of the protein measurements in the resource to partner the user guide provided to
support use of the Understanding Society dataset.

Proteomicmethods have been developed to enablemeasurements of low levels of proteins in blood samples.
In the dataset, 93.3% of datapoints fell above the limit of detection for the corresponding protein suggesting
that methodological issues are largely overcome. The issue of low detectability was largely confined to 18
(~10%) of the proteins, and eight of these were nevertheless found to be socially patterned, suggesting
that low detectability proteins have the potential to provide new insights into the biology underlying health
inequalities.

The pre-analytic factors found to be associated with protein levels and that need to be considered in anal-
yses include time of day of sampling, transit delay and haemolysis. A high proportion of the proteins are
significantly associated with a coarse “time of day” measure which may suggest diurnal variation. This could
be due to two reasons: diurnal variation in protein measurements or that participant characteristics vary by
time of day. There is evidence of diurnal variation in a number of analytes, including inflammatory markers
[4] and lipids [14]. Dominguez-Rodriguez et al (2009) [4] review the evidence for diurnal variation in a sub-
set of inflammatory markers, including interleukin-6 (IL-6), matrix metalloproteinases (MMPs), vascular cell
adhesion protein 1 (VCAM1) and intracellular adhesion molecule 1 (ICAM1), among others. They suggest
that most of these exhibit diurnal variation in either healthy people, patients with acute coronary syndrome,
or both, although findings are mixed for ICAM1. The present study finds that ICAM1 and VCAM1 both
vary by a coarse measure of time of day, as do two metalloproteinases ADAM 22 and ADAM 23, and the
metalloproteinase inhibitor TIMP 1. Thus, our findings broadly align with those in the review. However, as
the nurse visit could be scheduled at a time that suited the participant, associations may be confounded by
factors which are non-randomly associated with time of day in the dataset, which may need to be accounted
for in future analyses. Furthermore, we may have seen different observations if “time of day” had been
operationalised using a more sensitive measure than the three-level factor used in the present study (data
not shown).

In addition to time of day of sampling, transit delay and haemolysis are also potential sources of variability in
protein concentrations. However, we are aware that haemolysis is not a routine metric obtained in population
studies and is not measured systematically between laboratories. Haemolysis can occur during venepunc-
ture [15], and extended processing delays could also lead to haemolysis [5]. Many proteins are linearly
and/or non-linearly associated with transit delay. Proteins whose measurements increase with transit delay
may be leaking from lysed blood cells over time, and those which decrease over time may have undergone
degradation by proteolytic enzymes. Alternatively, ongoing biological processes may alter protein levels, or
some other change could take place that leads to analytical interference in the proximity extension assay.
All of the 27 proteins associated with haemolysis were also associated with transit delay and/or transit delay
squared, suggesting that a proportion of the variation associated with transit delay in the dataset may be
due to haemolysis. It seems that delay-related changes in central tendency of the protein measurements
can be corrected by adjusting for pre-analytic covariates in any analyses. We also demonstrate that the
spread of measurements changes with transit delay for some proteins, suggesting a potential reduction in
precision. The exclusion of measurements from samples with transit delays above a chosen threshold may
serve to reduce noise in the data. Indeed, samples with a delay greater than one week were excluded from
the present study, although more stringent delays may be considered for some proteins. It is worth noting,
however, that ad hoc data visualisations suggest that the analyses of spread may be sensitive to outliers,
although this has not been systematically explored (data not shown).
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We also demonstrate that transit delay is associated with a range of other factors. Due to the timed nature
of post collections by the postal service, it is unsurprising that time of day is related to transit delay. The
association between haemolysis and transit delay was expected [16]. Transit delay is also negatively asso-
ciated with age in an expected direction, as older adults are more likely to be at home during the day and
thus potentially less likely to schedule evening appointments which would lead to overnight delays in postal
collection. This could also partially explain the association between transit delay and educational attainment
as older people in the UK are likely to have fewer qualifications than younger people in the UK. Thus, cohort
effects lead to an over-representation of retired participants in the “no qualifications” group. Transit delay is
also related to geographical region, a factor which could proxy a number of different things, such as regional
differences in the average postal collection time or nurse effects. A more thorough investigation would be
required to explore the likely reasons for these associations.

Our findings accord with studies conducted in vitro in which experimentally-added hemolysate (blood cell
contents) impacted on assay performance for some proteins in the cardiometabolic panel [6] and the neu-
rology panel [7]. Most proteins were robust but the measurement of a number of proteins was sensitive
to interference: CA1, CA3, CD59, SOD1, CPM, EZR, gal-8, HAGH, LXN, MANF and NMNAT1. Using a
naturally-occurring indicator of haemolysis, we replicated findings for nine out of eleven, and found associ-
ations for a further 18 proteins. Our measure of haemolysis may therefore have been more sensitive than
the experimental setting. However, it should be noted that the causes of haemolysis are not confined to
pre-analytic problems: in vivo haemolysis may be linked to health and medication use [15].

A number of associations between demographic factors and protein measurements were detected, which
were robust to pre-analytic factors and require further investigation.

The majority of proteins were also patterned by educational attainment, suggesting that proteins may aid
the understanding of the biological pathways that underpin social differences in health [8]. While the addi-
tion of pre-analytic covariates improved model fit for 40 of the 57 proteins which were not associated with
education in the unadjusted analyses, subsequent adjustment made little difference to the associations with
educational attainment, with only ten proteins becoming significant or non-significant after adjustment. To
date, studies that have examined the association of protein levels with health generally have not accounted
for social factors. However our findings accord with a recent study that described the association of the
Olink panel “cardiovascular” proteins - which capture biological pathways that reflect inflammation, cellular
adhesion and platelet activity and intracellular signalling - with educational attainment (Shafi et al, 2002)
[8] and expand these observations to Olink “cardiometabolic” and “neurology” panels. This suggests that
researchers should account for measures of social position in their analyses. The findings also accord with
the notion that proteomic data are likely to provide insight into the biological pathways that play a role in the
widely described social inequalities in mental and physical health [17], [18], [19]. Focussing on the top ten
socially patterned proteins identified in the present study, which are all from the neurology panel (EDA2R,
MSR1, GFR_alpha_1, LAYN, VWC2, TNFRSF12A, SKR3, SCARB2, SCARF2 and UNC5C) we find that
nine were reportedly associated with general fluid cognitive ability in an analysis exploring the relationships
between plasma proteins and several cognition- and brain-related phenotypes in older cohorts (Harris et
al, 2020) [20]. Cognitive ability is socially patterned [21] but Harris and colleagues did not adjust for social
position, suggesting these observations require further investigation.

Our findings represent an extension of earlier analyses in a number of ways: for example, our analyses are
conducted in a wider age range than in the previous publication that examined associations with educational
attainment and protein levels [8]. Information in the study will enable future analyses of potential cohort ef-
fects, or non linear relationships between educational attainment and occupational exposures.

A smaller number of proteins are associated with ethnic group or are regionally patterned, which was unex-
pected given widely described ethnic differences in metabolic health [22] and regional differences in health
in the UK [23]. These observations require further investigation.
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6 Conclusion

Understanding Society’s proteomics dataset is of high quality with low missingness. Transit delay is a major
pre-analytic source of variability linked to our mode of collection, which initial exploratory analyses of the
dataset suggest can be adequately controlled for when examining associations with age and educational
attainment. Our analyses suggest that additional work is needed to understand the associations of education
and other measures of social (dis)advantage on protein levels.
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8 Appendix 1

We list the proteins with a statistically significant change in spread (standard deviation, SD) after a given 
number of days’ transit delay. The second and third column additionally impose “per cent change in SD” 
thresholds of 10% and 25%, respectively, wherein statistically significant changes are ignored if their mag-
nitude falls below the threshold.

Table 7: Transit delay cutoffs affecting spread: protein names

Proteins affected
Minimum transit
delay affecting
spread (days)

No SD % change cutoff 10% SD change cutoff 25% SD change cutoff

2 Alpha_2_MRAP,
ANGPTL3, APOM, BCAN,
CA1, CA4, CADM3,
CCL14, CCL18, CCL5,
CD200, CD200R1, CD38,
CD46, CDH1, CDH3,
CDH6, CLEC10A,
CLEC1B, CLM_1, CLM_6,
CNDP1, CPA2, CPM, CR2,
CST3, CTSC, CTSS,
DDR1, DEFA1, DRAXIN,
EDA2R, EFEMP1, EZR,
F7, FCGR3B, FETUB,
gal_8, GDF_8, GDNF,
GFR_alpha_1, GNLY,
GP1BA, GPC5, GZMA,
HAGH, IGFBP3, IGFBP6,
IL_5R_alpha, IL7R,
ITGAM, JAM_B, KIT,
KYNU, LAT, LAYN, LCN2,
LTBP2, LXN, MANF,
MATN3, MFAP5, MSR1,
NAAA, NBL1, NCAN,
NMNAT1, Nr_CAM, NRP2,
NTRK2, NTRK3, PCOLCE,
PDGF_R_alpha, PLXNB1,
PLXNB3, PRSS2, PRTG,
PVR, QPCT, REG1A,
RGMA, RSPO1, SCARA5,
SCARF2, SELL,
SERPINA5, sFRP_3,
Siglec_9, SIGLEC1, SKR3,
SMOC2, SOD1, SPOCK1,
TGFBR3, THY_1, TN_R,
TNFRSF12A, TNFRSF21,
TNXB, UNC5C, VWC2,
WFIKKN1

CD200, CD38, CDH6,
CLEC10A, CLEC1B,
CLM_6, CPM, CTSS,
DDR1, DEFA1, EZR,
GDNF, GZMA, MANF,
MSR1, NBL1, NCAN,
Nr_CAM, NRP2, NTRK2,
NTRK3, PDGF_R_alpha,
PLXNB1, PRTG, PVR,
REG1A, RGMA, SCARA5,
sFRP_3, SKR3, TGFBR3,
THY_1, TNFRSF21

CLEC1B, CPM, MANF,
Nr_CAM, NRP2, NTRK2,
THY_1, TNFRSF21
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3 Beta_NGF, CA3, CD59,
EFNA4, EPHB6, FAP,
FLRT2, G_CSF, LAIR_2,
MAPT, PLA2G7, SCARB2,
TMPRSS5, TNC

Alpha_2_MRAP,
Beta_NGF, CD59, G_CSF,
gal_8, ITGAM, Siglec_9,
TMPRSS5, TNC

G_CSF, NBL1

4 C2, FCGR2A, FcRL2,
ICAM3, LILRB1, LILRB2,
MET, N2DL_2, NOTCH1,
PAM, PRCP, SAA4,
SERPINA7

CA4, FAP, GNLY, LXN,
PLXNB3, SAA4, SCARF2,
SERPINA7

-

5 BMP_4, CES1, FCN2 BMP_4, CA3, CCL5,
CES1, CPA2, FCGR2A,
FCN2, FLRT2, LCN2,
MATN3, MFAP5, N2DL_2,
NMNAT1, QPCT

BMP_4, CLEC10A, FCN2,
FLRT2, LXN

6 - CD46, CLM_1, CTSC, LAT,
NAAA, SOD1, SPOCK1

Beta_NGF, LCN2

7 IL12 CA1, EFNA4, GPC5,
HAGH, IL12

CA1, CA3, CD59, CTSS,
EZR, HAGH, IL12,
N2DL_2, PLXNB1,
REG1A, SOD1
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None (i.e. SD is
stable)

ADAM_22, ADAM_23,
ANG, AOC3, C1QTNF1,
CFHR5, CHL1, CNTN5,
COL18A1, COMP,
CRTAC1, CRTAM, Dkk_4,
DPP4, ENG, F11, GAS6,
GDNFR_alpha_3,
GM_CSF_R_alpha,
ICAM1, IGLC2, LILRB5,
LYVE1, MBL2, MDGA1,
MEGF9, N_CDase,
NCAM1, NEP, NID1,
NRP1, OSMR, PLTP,
PLXNB2, PROC, PTPRS,
REG3A, RGMB, ROBO2,
SMPD1, SPARCL1,
ST6GAL1, TCN2, TGFBI,
THBS4, TIE1, TIMD4,
TIMP1, UMOD, VASN,
VCAM1

ADAM_22, ADAM_23,
ANG, ANGPTL3, AOC3,
APOM, BCAN, C1QTNF1,
C2, CADM3, CCL14,
CCL18, CD200R1, CDH1,
CDH3, CFHR5, CHL1,
CNDP1, CNTN5,
COL18A1, COMP, CR2,
CRTAC1, CRTAM, CST3,
Dkk_4, DPP4, DRAXIN,
EDA2R, EFEMP1, ENG,
EPHB6, F11, F7, FCGR3B,
FcRL2, FETUB, GAS6,
GDF_8, GDNFR_alpha_3,
GFR_alpha_1,
GM_CSF_R_alpha,
GP1BA, ICAM1, ICAM3,
IGFBP3, IGFBP6, IGLC2,
IL_5R_alpha, IL7R,
JAM_B, KIT, KYNU,
LAIR_2, LAYN, LILRB1,
LILRB2, LILRB5, LTBP2,
LYVE1, MAPT, MBL2,
MDGA1, MEGF9, MET,
N_CDase, NCAM1, NEP,
NID1, NOTCH1, NRP1,
OSMR, PAM, PCOLCE,
PLA2G7, PLTP, PLXNB2,
PRCP, PROC, PRSS2,
PTPRS, REG3A, RGMB,
ROBO2, RSPO1,
SCARB2, SELL,
SERPINA5, SIGLEC1,
SMOC2, SMPD1,
SPARCL1, ST6GAL1,
TCN2, TGFBI, THBS4,
TIE1, TIMD4, TIMP1,
TN_R, TNFRSF12A,
TNXB, UMOD, UNC5C,
VASN, VCAM1, VWC2,
WFIKKN1

ADAM_22, ADAM_23,
Alpha_2_MRAP, ANG,
ANGPTL3, AOC3, APOM,
BCAN, C1QTNF1, C2,
CA4, CADM3, CCL5,
CCL14, CCL18, CD200,
CD200R1, CD38, CD46,
CDH1, CDH3, CDH6,
CES1, CFHR5, CHL1,
CLM_1, CLM_6, CNDP1,
CNTN5, COL18A1, COMP,
CPA2, CR2, CRTAC1,
CRTAM, CST3, CTSC,
DDR1, DEFA1, Dkk_4,
DPP4, DRAXIN, EDA2R,
EFEMP1, EFNA4, ENG,
EPHB6, F11, F7, FAP,
FCGR2A, FCGR3B,
FcRL2, FETUB, gal_8,
GAS6, GDF_8, GDNF,
GDNFR_alpha_3,
GFR_alpha_1,
GM_CSF_R_alpha, GNLY,
GP1BA, GPC5, GZMA,
ICAM1, ICAM3, IGFBP3,
IGFBP6, IGLC2,
IL_5R_alpha, IL7R,
ITGAM, JAM_B, KIT,
KYNU, LAIR_2, LAT,
LAYN, LILRB1, LILRB2,
LILRB5, LTBP2, LYVE1,
MAPT, MATN3, MBL2,
MDGA1, MEGF9, MET,
MFAP5, MSR1, N_CDase,
NAAA, NCAM1, NCAN,
NEP, NID1, NMNAT1,
NOTCH1, NRP1, NTRK3,
OSMR, PAM, PCOLCE,
PDGF_R_alpha, PLA2G7,
PLTP, PLXNB2, PLXNB3,
PRCP, PROC, PRSS2,
PRTG, PTPRS, PVR,
QPCT, REG3A, RGMA,
RGMB, ROBO2, RSPO1,
SAA4, SCARA5, SCARB2,
SCARF2, SELL,
SERPINA5, SERPINA7,
sFRP_3, SIGLEC1,
Siglec_9, SKR3, SMOC2,
SMPD1, SPARCL1,
SPOCK1, ST6GAL1,
TCN2, TGFBI, TGFBR3,
THBS4, TIE1, TIMD4,
TIMP1, TMPRSS5, TN_R,
TNC, TNFRSF12A, TNXB,
UMOD, UNC5C, VASN,
VCAM1, VWC2, WFIKKN1
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We also include some example boxplots of proteins whose spread changes with transit delay. The spread
of CA3 changes significantly at 3 days’ delay (fig 6a), compared to 1-2 days’, but only by 2.4%, whereas it
changes by 14.2% at 5 days’ delay compared to 1-4 days’, and by 89.5% at 7 days’ delay compared to 1-6
days’. By contrast, ANG is consistently robust to transit delay (fig 6b) and BMP-4 (fig 6c) is robust until five
days when the standard deviation changes by 29.4%. It is worth noting that, for some of the proteins, spread
is drastically altered by extreme outliers; for example CLEC1B (fig 6d) which has two low outliers (values of
0.96 and 7.96; not plotted) which both have a transit delay of 2 days, contributing to an overall increase in
spread of 48.7% at 2 days’ delay – if these outliers are removed, this changes to an 18.8% reduction.
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Figure 6: Example proteins whose spread is affected by transit delay
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9 Appendix 2

Here we provide plots of the variance explained by educational attainment in unadjusted and adjusted mod-
els of protein levels for the 92 proteins with smaller variance explained values.
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Figure 7: Associations between proteins and educational attainment
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Figure 8: Associations between proteins and educational attainment
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