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Non-Technical Summary

Questionnaires can be administered using various mediums, from face-to-face interviews to
self-administration on the internet. This opens up the possibility of mixing two or more
modes of interview both for the same respondent (e.g., at different points in time) and
across individuals (e.g., offering the possibility of answering by web to some respondents) in
order to reduce costs and/or decrease non-response bias.

But to evaluate the utility of mixed modes designs we must disentangle the system-
atic tendency of selecting a mode (e.g., older people preferring face to face interviews)
from measurement differences (e.g., people answering by web are more honest than those
answering by telephone). In this paper a new approach to separating these two effects is
put forward. A small simulation study using the SF12 health scale is conducted in order to
show how the method works and what are the possible limitations.

The method proposes using equivalence testing, a statistical way of evaluating how
similarly scales are measured across groups, to control for potential measurement differences
between modes. This will make it possible to calculate the selection effect (i.e., tendency
of selecting a certain mode). The simulation study shows that the method gives unbiased
estimates as long as the two main assumptions, isolation and exhaustiveness, hold. The
potential of the approach and the possibilities for future development are discussed.
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Abstract

Mixed modes are becoming increasingly popular in surveys. This approach can
decrease costs and non-response bias. But in order to evaluate the utility of this
approach we must separate selection and measurement effects of the different modes.
In this paper I propose a new way of applying the front-door method to control for
measurement differences between modes: equivalence testing with latent measurement
models. A small simulation study will show how this approach works and how it
can be biased if the assumptions of exhaustiveness and isolation are not true in the
observed data.
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Introduction

Using multiple modes of interview (i.e., face to face, telephone, web) to conduct surveys
is increasingly popular as it can potentially lower costs while minimizing non-response bias
(De Leeuw, 2005). But despite the increased popularity of mixed mode surveys there is still
an acute need for methods to evaluate such designs. In order to gauge their effectiveness it
is essential to separate the effects of modes on selection and measurement. Only then is it
possible to investigate if the additional modes, usually more expensive, manage to include
different types of individuals and make the overall sample more representative. Additionally,
identifying the measurement effects of the different modes can inform design decisions.

Most of the literature in mixed modes research has used multiple items to control for
different selection propensity in modes in order to estimate measurement effects, also know
as the back-door method (Morgan and Winship, 2007; Pearl, 2009; Vannieuwenhuyze et al.,
2014). Recently, a different approach has been put forward, which aims to control for mode
differences in measurement, known as the front-door method (Morgan and Winship, 2007;
Pearl, 1995, 2009; Vannieuwenhuyze et al., 2014). This approach may prove an important
development as situations can be envisaged where good back-door variables are not available
but front-door ones are. Furthermore, considerable research and theory has been developed
to estimate and explain measurement differences between modes. This knowledge can be
fruitfully applied to the front-door method. While this approach has great potential, it hinges
on the ability to find new variables that are able to control for measurement differences across
modes.

The present paper will propose a new way to separate selection and measurement in
mixed mode research by utilizing equivalence testing as a front-door method. While test-
ing for equivalence has been previously used in the mixed mode literature (Cernat, 2014;
Gordoni et al., 2011; Heerwegh and Loosveldt, 2011; Hox et al., 2015; Klausch et al., 2013;
Révilla, 2013; Vannieuwenhuyze and Révilla, 2013) it has been usually implemented to esti-
mate measurement differences between modes after controlling for selection. The potential
of this approach as a front-door method for estimating selection mode effects on a latent
variable has been ignored so far. It is this point that this paper will elaborate on.

In order to show the potential of this method and it’s assumptions the next two sections
will present the main theoretical background of causal models and equivalence testing. Next,
a simulation study will exemplify the method and the potential bias when assumptions do
not hold. Finally, conclusions and limitations will be discussed.

Causal models and mixed modes

The fundamentals for the current discussion of causal analysis is based on the counterfactual
model which stipulates the existence of multiple causal states to which the population of
interest could be exposed. In the simple case of a mixed mode design with two modes each
individual could answer either in the first mode, m1, or in the second one, m2. Using the
notation of Vannieuwenhuyze et al. (2014) this will be denoted by D and is called mode of
data collection. Nevertheless, in a survey each respondent participates only using one mode,
the mode group, denoted by Gδ (where δ stands for the design used). Figure 1 graphically
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presents this situation. In the ideal counterfactual data we would have both D and Gδ and
they would not be related (situation a). Unfortunately, most of the real data has only one
observation per individual and thus the two variables can’t be distinguished (situation b).

Usually, the interest lies with the mean of a variable in the reference mode: µm1
=

E(Y |D = m1). Nevertheless, calculating this is not possible with observed data as it requires
counterfactual information:

µm1
= µm1m1

τm1
+ µm1m2

τm2
(1)

where µdg is the conditional mean E(Y |D = d,Gδ = g). In this equation µm1m1
can be

observed in the data as the people that answered using m1 while µm1m2
is a counterfactual as

it represents what would the respondents fromm2 would have answered had they participated
in m1. Here τg represents the propensity to answer in each group: P (Gδ = g).

Using this notation we can estimate the selection and the measurement effects:

Sm1
(µ) = µm1m1

− µm1m2
(2)

Mm1
(µ) = µm2m2

− µm1m2
(3)

The selection effect, Sm1
(µ), would be different from zero only if the people in the two modes

would have different different means had they all answered inm1. Similarly, the measurement
effect, Mm1

(µ), is given by the difference between the respondents in m2 and those in m1

if they had answered in the second mode. These formulae highlight the importance of
estimating the counterfactual in separating selection and measurement, this being essential
for the evaluation of mixed mode designs.

Using only the observed data does not enable the estimation of the two types of mode
effects. As a result, a series of models have been put forward in order to estimate the
counterfactuals. The causal literature has presented three main techniques: instrumental
variables, the back-door approach and the front-door approach (Morgan and Winship, 2007;
Pearl, 2009; Vannieuwenhuyze et al., 2014). The focus here will be on the latter two.

The back-door method aims to use a series of covariates (B in Figure 1e) that explain both
the variable of interest, Y, and the survey mode (Gδ). It has been shown that by controlling
for such variables it will be possible to calculate the counterfactual µm1m2

and, thus, calculate
the measurement effect (Morgan and Winship, 2007; Pearl, 2009; Vannieuwenhuyze et al.,
2014).

While this technique has been used repeatedly in the mixed mode field it does have
two important assumptions. The first one is the ignorable mode selection assumption. This
implies that the B variables will capture the entire relationship between mode and the
variable of interest Y (i.e., selection effect into survey mode). When this assumption does
not hold the estimates of selection and measurement effects of mode on Y will be biased
as they will still be confounded with selection on unmeasured B variables. The second
assumption is the mode insensitivity assumption. This means that there is no relationship
between B and D. In practice this implies that the measurement of the controlling variables
is not influenced by the mode of measurement.

The back door has been applied in the mixed mode literature multiple times using tech-
niques such as regression (e.g. Jäckle et al., 2010), matching (e.g. Lugtig et al., 2011), weight-
ing (e.g. Hox et al., 2015) and controlling for covariates in Structural Equation Modelling
(e.g., Heerwegh and Loosveldt, 2011).
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Figure 1: Counterfactual models for separating selection and measurement in a mixed mode
design. Adapted from Vannieuwenhuyze et al. (2014).
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Another approach to separating selection and measurement in mixed mode designs is the
front-door method (Morgan and Winship, 2007; Pearl, 1995, 2009; Vannieuwenhuyze et al.,
2014). Here the aim is to find a set of variables F (Figure 1f) that explain the measurement
effect of the mode on the variable of interest.

As with the previous approach the front-door also makes a number of assumptions. The
first one is the exhaustiveness assumption. This implies that the F -variables capture the
entire causal effect of D on Y. If this is not true, part of the estimated selection differences
will include differential measurement. Then, the isolation assumption requires that F is
independent of Gδ; if it does not hold, then F will also include part of the selection effect.

The front-door approach is relatively new in the causal literature and has been rarely
used in the mixed mode field (Vannieuwenhuyze et al., 2014). Although the assumptions of
the method are similar to those of the back-door the variables used in the two procedures to
separate selection and measurement are very different. Increasing the use of the front-door
will hinge on finding appropriate variables to control for measurement differences. Raising
awareness of this procedure and developing new ways to implement it in the field of mixed
modes will provide researchers with new tools to evaluate surveys that combine multiple
modes. Next, we turn to latent models and how they can be used to estimate and correct
for relative bias in measurement.

Equivalence testing and measurement

The use of latent variables in psychology, sociology or education has developed considerably
in the last half a century in an aim to control for the inevitable fallibility of observed items
and in order to get closer to substantial concepts used in theory. This development has
been based on the Classical Test Theory (Lord and Novick, 1968) and has been extended
with the use of latent variables in Structural Equation Modeling, Latent Class and Item
Response Theory. These approaches assume that there is an underlying, unobserved, concept
of interest that is measured with error by observed variables.

One such general model is the Confirmatory Factor Analysis (Bollen, 1989). Here we as-
sume that a vector p of observed items, y, are explained by an m set of underlying continuous
latent variables, ξ:

y(g) = υ(g) + Λ(g)ξ(g) + ǫ(g) (4)

where Λ is a p ∗m matrix of factor loadings, υ is a vector of intercepts or thresholds and ǫ is
a p vector of residuals (variances) independent of ξ and with a mean of zero (Bollen, 1989).
The superscript g indicates that the coefficients may vary across g groups. Let µξ and φξ be
the mean and the variance of ξ.

In this framework the loadings, Λ, and residuals, ǫ, can be considered to estimate the
reliability of the items (Bollen, 1989). The intercept, or the threshold when the observed
variables are categorical, is linked to the systematic part of the model. Variations of these
quantities are also know in the Item Response Theory as discrimination and difficulty.

This measurement approach has been further extended to estimate relative
bias by comparing these models across groups (Meredith, 1993; Millsap, 2012;
Steenkamp and Baumgartner, 1998). Because researchers are usually interested in ξ it is
essential that this is measured similarly (i.e., be equivalent or invariant) in each group of
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interest. If this is not the case, then any use of the latent variable may confound differences
in measurement with substantive differences.

In order to evaluate whether the measurement model is equivalent across groups, and
relative measurement error is the same, a series of nested models are tested. In each group
different levels of equality restrictions are added across groups. Usually, the procedure starts
with a general model, called the configural model, which assumes that the same structure is
found across groups, but no equality constraints are imposed on the coefficients. If this model
is found to fit the data, then a set of restrictions can be imposed on the Λ coefficients. If this
model also holds (i.e., if it’s not significantly worse than the configural model) the model
is considered metric equivalent across groups (Steenkamp and Baumgartner, 1998). Next, a
new set of restrictions can be added on the intercepts/thresholds, υ. If this model is accepted
(i.e., fits the data well) then it is considered scalar equivalent (Steenkamp and Baumgartner,
1998), strong factorial equivalent (Meredith, 1993) or first-order measurement invariant
(Millsap, 2012). The model can further be restricted to strict factorial invariance (Meredith,
1993) or second-order invariance (Millsap, 2012) by imposing equal random errors, ǫ. It
should be noted that in order to compare means of the latent variable(s), µξ, scalar equiv-
alence needs to be found while in order to compare variances, φξ, strict factorial invariance
must be accepted.

The different levels of cross-group equality presented above are relatively strict and are
hard to find in real-life data. As such, the concept of partial equivalence has been put forward
(Byrne et al., 1989; Steenkamp and Baumgartner, 1998). This implies that even if not all
the coefficients are equal across groups unbiased coefficients of ξ can be estimated if at least
two items are equivalent and if the differences found on the other items are controlled for.
This compromise has been found valuable as real world data has shown this to be quite
common (e.g., Davidov, 2008).

While equivalence testing has become very popular due to the methodological and sub-
stantive insights it brings it nevertheless has a number of limitations. One of them refers
to the fact that it can be implemented only when multiple items (preferably more than two
for each ξ) of the same dimension are measured (Alwin, 2007). Secondly, the procedure
estimates only relative bias. The measurement model may be the same across groups but
may lack validity. Thirdly, the usual procedure for ascertaining the level of equivalence is
exploratory and may capitalize on chance. Finally, the procedure cannot deal with certain
types of systematic errors. For example, if primacy (i.e., tendency of selecting the first cat-
egory irregardless of the question) is higher in all the items of one group then the difference
will be included in the mean of ξ, thus confounding substantive and measurement differences
across groups. This can be ameliorated by including the systematic errors in the model as
has been done with acquiescence (Billiet and Davidov, 2008; Billiet and McClendon, 2000),
method (Andrews, 1984; Campbell and Fiske, 1959; Saris and Gallhofer, 2007) or extreme
response style (Kankaraš et al., 2011).

As mentioned at the beginning of the article, the equivalence testing procedure has
been used a number of times in the mixed mode literature. The most typical use is to
estimate measurement differences between modes after controlling for selection using a set of
back-door variables, usually socio-demographics items (Gordoni et al., 2011; Hox et al., 2015;
Klausch et al., 2013). Alternatively, it has been used to compare measurement differences
of mode designs (Biemer, 2001) when these were randomly allocated (e.g., Cernat, 2014).
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Figure 2: Measurement model to be tested for equivalence.
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Previous research has also considered one of the limitations presented previously and have
included other systematic errors in the model when comparing modes, such as acquiescence
(Heerwegh and Loosveldt, 2011) or method (Révilla, 2013).

Equivalence testing as front-door approach

Given the the discussion so far, a natural question arises: is it possible to use equivalence
testing, which was developed to estimate and control for differences in measurement, as a
front-door to separate mode effects on selection and measurement? Because we do not expect
mode to have a causal impact on the latent variable any differences found on this dimension
can be due to selection, measurement or a combination of the two. Using equivalence testing
we should be able to control for measurement differences, if these appear in the form of
partial equivalence.

To see if this is the case and understand how results may be biased if assumptions don’t
hold a small simulation study will be presented below. Let’s assume we want to measure
mental health and we want to know whether people with different levels of health select into
modes. One possible way to measure this is with items from the SF12 scale (Ware et al.,
2007). SF12 is a scale developed to measure both physical and mental health. As such, we
will choose only those items that measure the latter sub-dimension (Figure 2).

In order to have plausible values for the population model we will use results from the
Understanding Society Innovation Panel wave 5 (Cernat, 2014; McFall et al., 2013). Apply-
ing the model in Figure 2 to these data we retrieve the following values that will be used as
the true/population scores in the simulation study for the first group, m1 (we will call these
Coef. 1 ):
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y = υ + Λξ + ǫ (5)
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Let us further assume that the mean and variance for the mode of interest are µm1
ξ = 0

and φm1
ξ = 1. Furthermore, selection effects on the latent variable for the second mode will

be added: µm2
ξ = 1.5 and φm2

ξ = 1.5. We know from the literature on equivalence testing
that estimating a Multi-Group Confirmatory Factor Analysis assuming strict factorial in-
variance when only selection on the latent variable is present will lead to unbiased estimates
(Hox et al., 2015; Meredith, 1964). Now lets assume that the second mode also has a mea-
surement effect. This can be included in the model by imposing different intercepts, loadings
and random errors in m2 (which we will call Coef. 2 ):

y = υ + Λξ + ǫ (6)
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We expect that ignoring the confounding of selection and measurement in the two modes
would lead to the biased estimation of the former. This can be clearly seen in the case
1 of Table 1 1. The mean and the variance of the selection in the second group is biased
when we ignore measurement differences: a bias of 31 for the mean and 20 for the variance
for the selection on the latent variable in the second mode. From the previous section we
expect that if we are able to find partial equivalence between the modes then we can control
for differences in measurement and estimate unbiased mode selection effects on the latent
variable. By calculating the same model but freeing the coefficients that are different in the
two groups we estimate the correct values for the mode selection effects (case 2 in Table
1). This exemplifies how partial equivalence testing can be used as a front door method for
estimating selection on a latent variable of interest.

While this is very encouraging we also know that this approach has two important as-
sumptions. The first one, exhaustiveness, implies that the partial equivalence captures all
the measurement differences between the two modes. If this is not true then the selection
effect will be biased. To test this let us imagine that in addition to the selection and mea-
surement differences already included in the model, there is also a type of systematic error

1The simulations have been run in Mplus 7.2. Sizes of 2000 respondents were assumed for each group. A
1000 repetitions were used. Please contact author for the syntax used in the simulation.
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in the second mode. This can take different forms such as acquiescence, social desirabil-
ity, extreme response styles or recency/primacy. Here we will assume that acquiescence or
primacy increases the chances of choosing the first category in the second mode. This is
implemented in the model by adding a latent variable in the second group. This has loading
of 1 on all the observed variables and a mean and variance of 1 (Billiet and Davidov, 2008;
Billiet and McClendon, 2000). As expected, if this type of mode difference in measurement
is ignored, then the estimate of selection will be biased (case 3 in Table 1): Means Square
Error for µm2

ξ and for φm2

ξ are approximately 1. If appropriate measures are in the data, for
example if balanced items are used for the items, then the response style can be modeled.
When this is included (case 4 in Table 1) selection effects will not be biased. This high-
lights both a limitation of the model but also it’s flexibility in including multiple types of
systematic errors.

A second assumption of the front-door method is isolation. This implies that there are
no other unobserved variables that have an impact both on measurement and selection. We
can think of multiple theoretical situations when this may not be plausible. For example,
people with lower working memory may have more measurement error in an auditory mode
than a visual one and may also auto-select in one of them. To model such a situation let
us imagine we have four groups: the reference mode with high working memory (m1a) and
with low working memory (m1b), and the second mode with high working memory (m2a)
and with low working memory (m2b). If isolation is not true in the population then working
memory will have a differential effect on measurement and selection in the two modes. We
can model this by imposing Coef. 1 in the first three groups: m1a, m1b and m2a. To
estimate measurement differences for the fourth group we will impose Coef.2 on m2b. To
simulate different selection we will impose the same mean and variance for the first mode
µm1a

ξ = µm1b

ξ = 0 and φm1a

ξ = φm1b

ξ = 1 and differential selection within mode 2: µm2a

ξ = 1,
φm2a

ξ = 1, µm2b

ξ = 2 and φm2b

ξ = 2.
In the real data, if we do not measure working memory then we assume that everything

within each mode is equal (i.e., coefficients of m1a = m1b and m2a = m2b). The theoretical
expectation is that this indeed will bias the estimate of selection in the latent variable. This
is obvious in case 5 of Table 1, where the coefficients for selection in the two subgroups of the
second mode are equal but both coefficients have systematic error with bias ranging from 7
for φm2b

ξ to 114 for φm2a

ξ . The last case of the simulation study shows once again that this
assumption can be freed if we measure working memory in the data and if we include it
in our model. The estimation of selection on the latent variable is unbiased and the model
controls for differential measurement and selection.

Conclusions and discussion

This paper has shown how it is possible to conceptualize equivalence testing as a front-
door method to estimate selection on a latent variable. While this technique has been used
multiple times in the field of mixed modes it has yet to be considered on its own terms as a
method to deal with the confounding of selection and measurement. The simulation study
has shown that the method will work and give unbiased estimates.

That being said, the model does make two important assumption: isolation and exhaus-
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tiveness. The simulation has shown that indeed when these do not hold in the population
the sample estimates of selection will be biased. Nevertheless, the method is flexible enough
to give users the opportunity to include any potential biasing factors as covariates. This
makes for a very versatile method for disentangling selection and measurement.

Equivalence testing has it’s own limitations as a statistical method, such as the need for
multiple items or capitalization on chance. This may lead to other types of biases when the
method is applied to the real world data. The paper has not tackled this issue directly but
there is considerable ongoing research that should reduce these issues in the future (e.g.,
Asparouhov and Muthén, 2014).

The paper has only highlighted the utility of the approach and possible limitations. In
order to make it more attractive for real world applications further research is needed. For
example, a thorough study that simulates multiple types of models with varying degrees
of miss-specification (e.g., multiple types of errors, multiple types of unobserved covariates)
may indicate to users the degree of bias they can expect when applying this method. Simi-
larly, developing methods to utilize the information estimated using this approach for other
purposes, such as creating weights or correcting substantive models, should be pursued.
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