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Non-Technical Summary 

 

The statistical precision of estimates from sample-based surveys is influenced by the 

way the sample of persons to be interviewed is selected. “Proportionate stratified 

sampling” is a technique used to ensure that the sample profile matches that of the 

population from which the sample is selected in some respects. The better the match 

between the sample profile and the population profile, the more precise the estimates 

will be. However, there are many different ways to implement proportionate stratified 

sampling and a key distinction is between “implicit” and “explicit” proportionate stratified 

sampling. Implicit stratified sampling would involve, for example, listing all the people in 

the population in order of date of birth and then sampling every 100th person on the list. 

Explicit stratified sampling, on the other hand, might involve sorting people into a 

number of age groups and then randomly sampling 1 in 100 people from each age 

group in turn. 

In this paper we compare these two methods of sample selection. We do this by 

pretending that the Understanding Society wave 1 sample of respondents is in fact a 

complete population that we wish to study. Because we know the survey responses of 

everyone in the population, we can calculate exactly how precise estimates would be 

with each method of selecting a sample from this population. In this way, we can show 

how much more precise the implicit method is than the explicit method. 

However, one drawback of the implicit method in a real survey situation (when we do 

not know how all the other population members – not selected into the survey sample – 

would have answered the survey questions) is that it is not possible to estimate well 

how precise the survey estimates are. Instead, an approximation is used that tends to 

under-estimate the precision. Because in this study we know the true precision of the 

estimates that would be obtained with implicit stratified sampling, we are able to show 

by how much this precision is under-estimated. 



 

In conclusion, the paper argues that implicit proportionate stratified sampling may be 

preferable to explicit proportionate stratified sampling as it provides better precision, 

even though survey users may not have good information about how much more 

precise the estimates are. 
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Abstract 
 

Explicit stratified sampling (ESS) and implicit stratified sampling (ISS) are alternative 

methods for controlling the distribution of a survey sample, thereby potentially improving 

the precision of survey estimates. With ESS, unbiased estimation of standard errors is 

possible, whereas with ISS it is not. Instead, usual practice is to invoke an approximation 

that tends to result in systematic over-estimation. This can be perceived as a disadvantage 

of ISS. However, this article demonstrates that true standard errors are smaller with ISS 

and argues that this advantage may be more important than the ability to obtain unbiased 

estimates of the standard errors.   
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1. Introduction 

Most surveys use stratified sampling designs. This is done in order to benefit from 

the precision gains that such designs can bring. For a modest effort in designing the 

sample, the precision gains can often be equivalent to those that would accrue from 

carrying out tens or even hundreds of extra interviews. Stratified sampling is 

therefore highly cost-effective. However, there are many different ways that it can be 

done. The researcher must choose which variables to use, and how to combine 

them to define the strata. She must also decide whether all strata should be sampled 

at the same rate (proportionate stratified sampling) or whether some should be over-

sampled, perhaps in order to increase the representation in the sample of certain 

subgroups (disproportionate stratified sampling). Though the researcher is typically 

constrained to define strata in terms of information that is either available on the 

sampling frame or can be linked to the frame, this still usually leaves a lot of options 

regarding exactly how the information should be used. The better the decisions, the 

more cost-effective the survey design will be. 

This article focuses on one specific decision that the researcher must make: whether 

to use explicit stratified sampling (ESS) or implicit stratified sampling (ISS). For 

simplicity, we illustrate the arguments in the context of proportionate stratified 
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sampling, but the arguments apply equally when sampling is disproportionate, as a 

similar decision must be made within each top-level sampling domain. 

ESS involves sorting the population elements into explicit groups (strata) and then 

selecting a sample independently from each stratum. ISS involves ranking the 

elements following some ordering principle and then applying systematic sampling, 

i.e. selecting every nth element. For example, if the sampling frame were a list of 

people containing a single auxiliary variable, date of birth, proportionate ESS would 

involve creating strata corresponding to a number of discrete age groups and then 

selecting, using simple random sampling, a number of people from each group such 

that the proportion of the sample in each group equals the proportion of the 

population in the group. ISS, on the other hand, would involve sorting the people 

from youngest to oldest (or oldest to youngest; this is equivalent) and then selecting 

every nth person on the list (after generating a random start point). 

One advantage of ESS is that it permits different sampling fractions to be applied to 

different sub-domains of the population (disproportionate stratified sampling), if the 

strata are created to reflect the sub-domains. But if disproportionate sampling is not 

desired, this advantage does not apply and it is less clear whether ESS should be 

used. Another advantage of ESS is that unbiased estimation of the standard errors 

of survey estimates is possible, provided that the sampling stratum membership is 

identified on the survey dataset and provided that at least two sample elements are 

selected from each stratum. With ISS this is not possible and usual practice is to 

invoke an approximation that tends to result in systematic over-estimation of 

standard errors. This can be perceived as a disadvantage of ISS. However, this begs 

the question of whether it is better to know the precision of one’s estimates or to 
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have more precise estimates without knowing exactly how much more precise they 

are. 

This article provides an exposition of this distinction between ESS and ISS and 

attempts, via a simulation study using real survey data, to quantify the extent of the 

improvement in precision with ISS and the extent of the uncertainty about the 

improvement in precision if the usual approximation is used to estimate standard 

errors. In the next section, the relevant aspects of sampling theory are presented 

and are used to derive an expression for the difference in sampling variance 

between ESS and ISS. The following sections describe how a simulation study will 

be used to quantify the true difference in sampling variance between the two designs 

and the extent to which sampling variance will tend to be over-estimated if the usual 

approximation is used in the case of ISS. The results from the study are then 

presented and the implications are discussed in the final section. 

 

2. Sampling Theory 

For simplicity of exposition, it will be assumed that survey estimates are means or 

proportions. It is likely – though not demonstrated in this article – that the findings will 

be broadly applicable to other types of estimates too. Under ESS, the sampling 

variance of the sample mean can be expressed (Kish 1965, p.81; Cochrane 1977, 

p.69) as: 

 Var�y�� = ∑ 
���

�
�����

�

���
�
���   - (1) 

where S�
� = Var��y���  is the variance of y within stratum i (y��	is the value of y for 

individual k in stratum i ); 
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 n� is the number of sample elements in stratum i; 

 N� is the number of population elements in stratum i; 

and N = ∑ N�
�
���   is the total number of elements in the population. 

In this article we will assume the context of proportionate sampling, in which case 

��


�
= �



	 , i = 1,… , I. With this assumption, expression (1) simplifies to: 

 Var�y�� =
∑ ��


 
�!" �
�����

�

  - (2) 

From this expression it can be seen that differences between strata in terms of y do 

not contribute to the sampling variance. The sampling variance depends only on the 

variance of y within the strata. This demonstrates how stratified sampling improves 

the precision of estimates; by eliminating any influence on the sample of one part of 

the variance of y, namely the part that is between-strata. Once a survey has been 

carried out, Var�y#� can be estimated in a straight-forward manner from the survey 

data, by substituting the observed within-stratum sample variances (s�
�) for the 

corresponding population variances (S�
�), thus: 

 Var% �y�� =
∑ &�


�
�����
 
�!"

�

  - (3) 

For ISS designs there is of course no concept of explicit strata, so the {i} in 

expression (2) are not defined. The design-based variance of a sample mean is 

equivalent to that under cluster sampling with a sample size of one cluster (Madow 

and Madow 1944). Unbiased sample-based estimators of this variance do not exist. 

While a number of estimators have been proposed, all of them are biased and all will 

over-estimate the variance whenever the stratification effect is anything more than 

negligible (Wolter 1985, pp.258-262). A commonly-used variance estimation method 
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is to treat the ordered list of selected elements as if each consecutive pair had been 

selected from the same stratum (Wolter, 1985, pp.250-251). Thus, a systematic 

sample of n elements from an implicitly-stratified list is treated as if it consisted of 

simple random samples of size 2 from each of n/2 explicit strata. In order to compare 

the sampling variance of ISS and ESS, we can consider the situation in which the 

ISS pseudo-strata are subsets of the ESS strata. This is a realistic reflection of the 

example mentioned in the previous section of stratifying either explicitly or implicitly 

using date of birth. We will denote the ISS substrata by j = 1, … , Ji. Then, the 

approximation usually invoked to estimate the sampling variance associated with ISS 

is: 

 Var% �y�� =
∑ ∑ &'


(
'��')
*�
'!"

 
�!"

�

  - (4) 

whereas the true ISS sampling variance is: 

 Var�y�� =
∑ �+,-�+,,�

. /0
-!"

(
 �0 ��)
   - (5) 

where 

there are N/n possible samples that could be selected, corresponding to the 

N/n possible random start points; 

 y�1 is the sample mean of y for sample h; 

 y�� = 
�



∑ y�1


 �0
1��  is the mean of the N/n sample means. 

This can be thought of as the sampling variance of a mean under cluster sampling, 

with a sample size of one cluster, where the population is divided into N/n clusters, 

y�1 are the cluster means, and y�� is the population mean. 
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3. Simulation Methodology 

Data from wave 1 of Understanding Society, the UK Household Longitudinal Study, 

are treated as population data. These data are used to calculate the sampling 

variance of means and proportions under simple random sampling, ESS and ISS, in 

ways that will be described in this section. Understanding Society is a large 

nationally-representative multi-topic general population survey. A stratified, multi-

stage sample of addresses was selected (Lynn, 2009) and all persons aged 16 or 

over resident at a sample address were eligible for an individual interview at wave 1. 

Members of ethnic minority groups and residents of Northern Ireland were sampled 

at higher rates than the remainder of the population. Data collection took place face-

to-face in respondent’s homes using computer-assisted personal interviewing (CAPI) 

between January 2009 and March 2011. At wave 1, 50,295 individual interviews 

were completed with sample members. For the illustrative purposes of this article, 

these individuals are treated as a population from which survey samples are to be 

selected. 

A set of eleven target parameters were selected for study. Of these, five are means 

of continuous variables and six are proportions based on binary variables. For each, 

we are interested in comparing the sampling variance of the sample statistic under 

alternative sampling designs and the estimate of the ISS sampling variance using 

the successive pairing approach. For ease of exposition and calculation, for each 

parameter we first amend the population such that N is a multiple of 100. This allows 

the subsequent creation of equal-sized explicit strata (each containing 23 = 100 

elements) and the application of implicitly stratified systematic sampling designs in 

which the sampling interval takes the integer value of 50, the convenience of which 
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will be explained below. From the 50,295 elements, we first drop any with item 

missing values. This is done separately for each of the eleven target variables, so 

the dropped elements will differ between the eleven simulated populations. Then, a 

further set of m elements are dropped (m between 0 and 99) in order to round the 

population size down to a multiple of 100. The m elements with the smallest analysis 

weights (largest inclusion probabilities) are chosen. Descriptive statistics regarding 

this process are presented in Table 1.  

For each estimate, the variance and estimated variance for samples of size 2 500  will 

be compared under different designs. The following sub-sections describe the 

sampling variance metrics that were calculated for each of the eleven parameters to 

be estimated. All but one of the metrics rely on knowledge of the population size, N, 

and the population variance of y, 6�, each of which were derived in the usual way 

from the population simulated as described above.  

3.1 Simple Random Sampling 

The variance of 7� under simple random sampling is computed as a benchmark and 

will be used later in the calculation of design effects for the various sample designs 

under consideration, to help with interpretation of the findings. It is calculated in the 

usual way: 

89:;<;�7�� = ;
�=�>�

>=
  - (6) 
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Table 1: Simulated Populations for 11 Parameter Est imates 

 Understanding 

Society 

sample size 

Item 

missing 

Also 

dropped 

(smallest 

weights 

Simulated 

population 

size, N 

Sample 

size, n 

Continuous variables      

Total monthly income 50,295 78 17 50,200 1,004 

Monthly benefit income  50,295 3,236 59 47,000 940 

Number of children 50,295 50 45 50,200 1,004 

Hours of sleep 50,295 12,420 75 37,800 756 

Body mass index 50,295 6,432 63 43,800 876 

Binary variables      

Limiting long-term illness 

(%) 

50,295 0 95 50,200 1,004 

Arthritis (%) 50,295 3,234 61 47,000 940 

In paid employment (%) 50,295 90 5 50,200 1,004 

Has degree (%) 50,295 86 9 50,200 1,004 

Lives with spouse/partner 

(%) 

50,295 0 95 50,200 1,004 

Religion makes a great 

difference (%) 

50,295 3,234 61 47,000 940 

Note: Hours of sleep was asked in a supplemental self-completion questionnaire that was 
returned by only 85.9% of interview respondents, whereas all other items were administered 
in the face-to-face interview. The items on body mass index, arthritis and religion were not 
included in the proxy version of the face-to-face interview, which was administered for 6.4% 
of respondents. 

 

3.2 Explicit Stratified Sampling with 11 Strata 

The first stratified design considered is one with eleven explicit strata, defined by the 

person’s age. The first stratum consists of persons aged 16 to 19; the following nine 

strata consist of five-year age bands from 20-24 to 60-64; the final stratum consists 

of person 65 years old or older. Proportionate stratified sampling with a sampling 
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fraction of 1 in 50 is used. The sampling variance of a mean is therefore calculated 

as in expression (2) above, with ?3 = 23
500  and @ = 11. 

3.3 Explicit Stratified Sampling with N/100 Strata 

The second stratified design considered is one with N/100 equal-sized explicit strata, 

again defined by the person’s age. It can be seen from Table 1 that this corresponds 

to between 378 and 502 strata. The strata are created by first sorting the population 

in increasing order of age and then treating the first 100 in sorted order as the first 

stratum, and so on. A simple random sample of n = 2 is selected from each stratum. 

The sampling variance of a mean is therefore calculated as in expression (2) above, 

with ?3 = 2 and @ = 2
1000 . 

3.4 Implicit Stratified Sampling with n = N/50 

The third design considered involves sorting the population in increasing order of 

age and then selecting a systematic random sample of N/50 cases using a random 

start between 1 and N/50. There are therefore N/50 possible samples that could be 

selected and the sampling variance of a mean is calculated as the variance of the 

N/50 corresponding sample means, as in expression (5), with n = 50. 

In addition to calculating the true sampling variance for this design, the expected 

value of the estimated sampling variance was calculated using the consecutive pairs 

method outlined in section 2 above. This was done by calculating the estimate 

produced by expression (5) for each of the N/50 possible samples and then taking 

the mean of these N/50 values.  
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4. RESULTS 

For each of the eleven variables, Table 2 presents the true standard error of the 

sample mean under each of the four sample designs under consideration, as well as 

the expected value of the estimate of the standard error for the ISS design under the 

consecutive pairs method. The true value of the population mean is also presented 

for reference (first column). It is worth noting firstly that the relative standard errors 

vary greatly between the eleven estimates. Under SRS, they range from 0.01 to 

0.08, with the exception of body mass index, which has a relative standard error of 

0.65 (driven by a number of influential outliers). This provides a range of 

circumstances in which to compare the effects of alternative stratified sample 

designs.  

As expected, standard errors are in all cases smaller under stratified sampling that 

under simple random sampling. In fact the rank order of the four designs in terms of 

standard error is the same for all eleven estimates: ESS with eleven strata provides 

an improvement in precision over SRS, ESS with around 500 strata (N/100) provides 

a further improvement, and ISS improves precision further still. The relative extent of 

the standard error reduction varies between the estimates, however. For example, 

for estimating mean number of children or the proportion of people in paid 

employment most of the gains to be had from stratifying by age accrue with the use 

of just eleven explicit strata: extensions to 500 strata or ISS provide only very 

modest marginal gains. For body mass index and for the proportion suffering from 

arthritis, on the other hand, the gains in moving from eleven to 500 explicit strata are 

similar or greater in magnitude to those in moving from no strata (SRS) to eleven. 
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These differences evidently reflect the differing nature of the associations of the 

variables with age and are illustrated in Figure 1, which presents the design effect for 

each of the three stratified designs (ratio of sampling variance under ESS or ISS to 

that under SRS). The proportion suffering from arthritis stands out as the estimate 

that gains most in terms of precision from each of the successive enhancements to 

stratification. The precision gain in moving from the ESS11 to the ESS(N/100) design 

demonstrates that tendency to suffer from arthritis is quite strongly associated with 

age, even within eleven strata of the ESS11 design. However, the further gain in 

moving to the ISS design shows that even within (at least some of) the 470 strata in 

the ESS(N/100) design there remains an association of arthritis with age. This may 

seem surprising considering that each of the 470 strata covers an age range of only 

around 2.5 months, on average, but is explained by the strata towards the upper end 

of the age range – where arthritis is most prevalent – covering larger age ranges, 

reflecting the smaller population sizes. The design effect of around 0.65 for this 

estimate with ISS – the smallest of all the design effects in this study – represents a 

very considerable precision gain. Without stratification, this improvement in precision 

would require an increase in the sample size with SRS from 940 to 1,443 – an 

increase that would have considerable cost. 

The other variable that stands out in Figure 1 is the only attitudinal variable in the 

study, the proportion of people agreeing with the statement that religion makes a big 

difference in life. This variable stands out because the precision gains from 

stratification are much more modest than for all other variables. Beliefs about the 

importance of religion are only very weakly associated with age. 

Turning now to the final column of Table 2, it can be seen that the consecutive pairs 

method of variance estimation for ISS results in a modest over-estimation of 
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standard errors, i.e. an under-estimation of the precision gain from stratification. The 

expected value of the estimated standard error is typically similar to, or just slightly 

smaller than, the true standard error with the ESS(N/100) design. This is of course 

the design that is assumed by expression (4) with ?B = 2, but the estimated standard 

errors differ from the true standard errors under this design due to the data having 

been generated by a different mechanism. 

 

Table 2: Standard errors under four sample designs,  and mean estimated standard 

errors for implicit stratified sampling 

 Mean   s.e.    Est.(s.e.) 

Continuous variables   SRS ESS(11) ESS(N/100) ISS  ISS 

Total monthly income 1479.0  49.82 47.28 46.22 45.33  46.24 

Monthly benefit income  466.0  37.28 36.23 36.08 35.72  36.15 

Number of children 1.600  0.0467 0.0406 0.0403 0.0403  0.0403 

Hours of sleep 6.97  0.0587 0.0577 0.0576 0.0574  0.0576 

Body mass index 26.06  17.03 16.42 15.35 15.19  15.28 

Binary variables         

Limiting long-term 

illness (%) 

34.93  1.489 1.400 1.397 1.392  1.396 

Arthritis (%) 14.29  1.130 1.042 0.976 0.912  0.968 

In paid employment (%) 52.29  1.560 1.362 1.339 1.333  1.339 

Has degree (%) 21.37  1.281 1.242 1.236 1.216  1.226 

Lives with 

spouse/partner (%) 

61.51  1.520 1.384 1.356 1.338  1.344 

Religion makes a great 

difference (%) 

22.13  1.340 1.337 1.334 1.331  1.333 
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Figure 1: Design effects for three sample designs 

 

 

 

5. DISCUSSION 

The simulation study has shown, using real survey data, that ISS provides useful 

precision gains relative to ESS. This is true even when comparing to the most 

detailed form of ESS possible, namely that which involves creating strata such that 

just two selections are made from each stratum (i.e. the minimum number that 

permits variance estimation.) This result should lead researchers to question why, 

whenever useful auxiliary data are available for sample stratification, one would ever 

choose not to use implicit stratification, given that estimates will be less precise as a 

result. In practice, ESS typically involves a rather smaller number of strata, such that 

the average number of sample elements selected from each stratum is very 

considerably greater than two, perhaps more akin to the ESS11 design presented 

here. In this study, the ISS design produced substantially smaller standard errors 
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than the ESS11 design, so there seems to be a strong case for ISS designs rather 

than ESS designs of this kind.  

Furthermore, the approximation that must be used to estimate standard errors with 

ISS results in only a modest over-estimation. This would make statistical tests 

slightly conservative, which is probably more desirable than the false precision that 

would be provided by the opposite. In any case, the extent of the over-estimation 

(systematic error) is most likely small compared to the extent of sampling variance in 

the standard error estimate (random error). 

The choice between ESS and ISS would therefore seem to come down to a choice 

between improved precision of the survey estimate or unbiased estimation of the 

precision of the survey estimate. To take the estimation of the proportion of people 

suffering from arthritis as a concrete example, would researchers prefer to have a 

standard error of 1.130 associated with their estimate (expected value) of 14.29 and 

to have an estimate of the standard error with an expected value of 1.130, or to have 

a standard error of 0.912 and an estimate of the standard error with an expected 

value of 0.968? 
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