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Non-technical summary

Previous research has found differences in outcomes between surveys completed
on mobile devices and PCs. This research considers the effect of the large number
of different mobile devices that people use to respond to surveys. Not much it known
about how the different specifications of these devices might affect the quality of data

collected using them.

The data used is from the Understanding Society Spending Study One, this was an
app-based study asking respondents to take pictures of receipts or submit
information about purchases using their mobile devices. Respondents to the
Understanding Society Innovation Panel were invited to take part in the Spending
Study between waves nine and ten of the Innovation Panel. The make, model and
operating system of the mobile devices used were captured using the Spending
Study app. Additional data on device characteristics was collected using Amazon
mTurk and web scraping including: Random-Access Memory (RAM), camera quality

and processor performance.

Several survey outcomes were looked at, including: the length of time it took to use
the app, the quality of images of receipts, whether data was submitted as a picture of
a receipt or input manually, how many shopping items were on the image of the

receipt.

It was found that the device used can have a large effect on certain survey
outcomes. This was most noticeable for the quality of the photographs of receipts.
Additionally, certain characteristics of mobile devices were found to matter more than
others in their effect on survey outcomes. For example, whether a mobile device was
a tablet or smartphone, whether it was an Apple or Android device, and how much
RAM the device had all affected more than one survey outcome. Finally, some of the
results that were found seem to be because of different respondents selecting
different mobile devices, rather than the effect of the devices themselves.
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Abstract:

Previous research has found differences in survey outcomes on mobile devices and
PCs. A wide variety of mobiles devices are used to respond to surveys. Little is
known about how differences in mobile devices may affect data quality. Data is from
the Understanding Society Spending Study One, an app-based study asking
participants to take pictures of receipts or submit information about purchases.
Results suggest some survey outcomes can be strongly affected by the device used.
Important device characteristics affecting data quality were whether the device was a
tablet or smartphone, the operating system, and the amount of Random-Access

Memory.
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1 Introduction

Data collection using mobile devices, whilst offering many new opportunities for
innovations in survey methodology, presents its own challenges. One challenge is
how to address the diverse range of available makes and models that make up the
mobile device market. There were an estimated 1,600 models of mobile device
available on the market in 2009 (Zahariev et al. 2009 cited in Callegaro 2010). The
number of Android models, the most diverse mobile operating system by number of
model types, was reportedly around 24,000 in 2015 (Open Signal 2015).

Such diversity raises questions as to the extent to which the use of different devices
influences the data collection process and whether we should be concerned by this
influence. These questions are concerning because diversity in the device used
comes as a challenge to one of the central tenets of survey design, standardisation.
If differences in device result in differences in the survey experience, or in the
responses collected, it becomes important to either mitigate those biases, or to be

able to correct for them.

When exploring the effect of device differences there are a range of different
outcomes that can be examined. One set of outcomes is indicators of the response
behaviour of those completing the survey, such as response time durations. A
second set of outcomes is data quality indicators such as missing data, or lower

guality responses.

It seems likely that differences may be accentuated when data collection makes use
of hardware capabilities of devices to collect data besides those collected in a
traditional survey. As more features of the device are drawn upon it seems probable
that differences in device specifications will have a greater impact. Take for example
asking respondents to use the cameras on their mobile device to take pictures for
data collection, as was the case in the data collection task examined in this research.
Here we might expect that the quality of the camera will affect the data that is
collected. However, we might also find that the processor speed and available
memory of the device may have an impact on how quickly the respondent can

complete the task, or if they can complete the task at all.



Another question that remains unanswered is whether observed differences in
outcomes are the result of device characteristics or whether they result from different
types of people selecting different types of device. This would mean the selection
mechanism through which individuals choose their devices would also account for
the observed differences in outcomes. It is therefore necessary to model both device
characteristics and respondent characteristics to fully understand the influence of

device upon data collection outcomes.

To examine the influence of device characteristics on data collection using a mobile
app this paper uses data from the Understanding Society Spending Study. The
Spending Study tasked respondents with using a mobile app to record their
expenditure across a month. Respondents could take a picture of a receipt, manually
enter some data about a purchase, or report no spending on a given day. Spending
Study data is supplemented with data from wave nine of the Understanding Society
Innovation Panel and additional data collected on characteristics of the devices used
to participate in the Spending Study. These data are used to examine the following

research questions:

RQ1: What proportion of the variance in data quality indicators can be attributed to

the device model used to participate, and what proportion to the respondent?
RQ2: Are specific device characteristics associated with data quality indicators?

RQ3: Do any associations between device characteristics and data quality indicators

remain after controlling for respondent characteristics?

2 Background

To date, there are no papers that have explicitly examined the model of mobile
device used in a survey. Most of the existing literature on device effects has been
framed within the mode effects paradigm. One of the drawbacks of this is that it only
allows analysis of differences between broad categorisations such as comparing
between smartphones, tablets and desktops. To extend upon this and to examine
device effects in more detail it is useful to consider device effects as a parallel to
interviewer effects. One reason this is useful is that if we consider how the role of the

device is like that of an interviewer in a face-to-face survey then it is possible to draw



on the extensive interviewer effects literature to establish a conceptual
understanding of how and why device effects may occur. In addition, the similar
hierarchical structure of survey responses clustered in either devices or interviewers
mean that establishing the parallels between the two can help shape the appropriate

methodology for studying device effects.

2.1 Mode effects paradigm

The potential effects of the mode used to administer a survey has long been
recognised (Deming 1944) and substantial evidence in support of mode effects has
been found (e.g. Groves and Kahn 1979, Dillman and Christian 2005, Elliott,
Zaslavsky et al. 2009). For a comprehensive discussion of the effects of the mode of
data collection the reader is directed to Jackle, Roberts et al. (2010). In short, the
main concern has been the degree to which different modes used to administer
surveys contribute to different sources of error, whether the resulting data from
different modes are then comparable. With the rise in the number of web
administered surveys, research has been conducted to examine the potential for
mode effects in web administered surveys, comparing them to face-to-face and
telephone surveys (e.g. McCabe, Boyd et al. 2002, Link and Mokdad 2005, Shin,
Johnson et al. 2012).

Much of the research into device effects has followed in the tradition of the mode
effects literature. Research into device effects has typically made comparisons
between surveys completed using a PC (defined as a desktop or laptop computer)
and those completed using mobile devices (defined as a mobile phone or tablet)
(e.g. De Bruijne and Wijnant 2013, Fernee and Sonck 2013, Mavletova 2013, De
Bruijne and Wijnant 2014, Lugtig and Toepoel 2015, Struminskaya, Weyandt et al.
2015, Revilla, Toninelli et al. 2016, Couper and Peterson 2017, Keusch and Yan
2017, Revilla 2017, Revilla and Couper 2018). It should be noted that many of these
examples do not refer to PC and mobile survey completion as separate modes;
instead, both PC and mobile survey completion are considered as sub-types of the

web mode.

Evidence of a number of differences in surveys completion between PCs and mobile

devices has been found. Revilla, Toninelli et al. (2016) found that smartphone



respondents typically provided longer answers to open-ended questions than those

using PCs. This finding was replicated by Antoun, Couper et al. (2017).

Couper and Peterson (2017) found that respondents typically took longer to answer
guestions on mobile devices, and that much of this could be attributed to increased
time spent scrolling. Several other studies have also found evidence that
respondents take longer to complete surveys when using a mobile device (De
Bruijne and Wijnant 2013, Mavletova 2013, Mavletova and Couper 2013, Cook 2014,
Wells, Bailey et al. 2014, Struminskaya, Weyandt et al. 2015). However, some
research has found no differences in the average response times between mobile
and desktop respondents (Toepoel and Lugtig 2014, Lugtig and Toepoel 2015).

Another finding is that respondents using mobile devices are less likely to straightline
than those using a PC (Lugtig and Toepoel 2015, Keusch and Yan 2017). However,
conflicting evidence that mobile respondents may in fact be more likely to straightline
has also been found (Struminskaya, Weyandt et al. 2015), and it has been
suggested that this may be dependent on whether the questions are presented in a
grid .

Research into device effects for several other forms of measurement error have
found no evidence of such effects, including: disclosure of sensitive information
(Mavletova 2013, Reuvilla, Toninelli et al. 2016, Antoun, Couper et al. 2017);
acquiescence (Keusch and Yan 2017); mid-point responding (Keusch and Yan
2017); item nonresponse (Lugtig and Toepoel 2015, Revilla and Couper 2018); and
primacy effects (Mavletova 2013, Lugtig and Toepoel 2015).

2.2 Interviewer effects conceptually

Considering device effects in the same fashion as mode effects is useful for
establishing differences in broad categorisations such as PCs compared to mobile
devices. However, to gain a more granular understanding of device effects, in
particular, the clustering effect of a specific model of device, it becomes necessary to
turn to a different body of literature to inform our thinking. In this instance, the device
effect can be seen to be similar to interviewer effects. To draw this parallel the
survey must be seen conceptually as an interaction between the respondent and an

agent of the researcher, but instead of the interviewer, the agent is the respondent’s



own device. The device takes the place of the interviewer in a face-to-face interview.
One key difference (that is returned to in the section on respondent characteristics in
the measures section below) is that the respondents have themselves selected
which device they are using.

From a conceptual standpoint it is therefore useful to consider the framework of
interviewer effects outlined by Sudman and Bradburn (1974) which suggests three
ways in which the interviewer may bias responses. The first of these they term
interviewer role demands. This refers to the degree of autonomy given to
interviewers when the researcher specifies how they should go about conducting the
interviews. They suggest this is a continuum, with a highly standardised approach
with zero deviation from the interview script allowed at one end. At the other end of
the continuum interviewers are asked to adopt an approach where they are
encouraged to adapt their behaviour to best allow them to complete an interview with
a given respondent.

In terms of web surveys, the parallel to this would be the degree to which the
functionality of the survey website or app is explicitly defined. When designing the
survey task, the researcher can choose the degree to which they are explicit in
outlining the processes the device goes through as the respondent completes the
task. Some, or all, of the background tasks that the device performs may rely on
defaults or logic that are provided by the device.

To illustrate this, consider the example of collecting survey data in the form of
photographs, taken by respondents using the camera on their mobile device. The
researcher, at the design stage, can choose to explicitly make choices such as
where on the device the image is stored, the quality of the image that is taken, or
whether to use a standardised protocol for transmission of that photograph. Instead
of explicitly defining each of these choices, the researcher may instead decide to
allow the device to make these choices, either based on defaults set by the device
manufacturer, or through logic defined in the software libraries on top of which the
app is designed. These decisions, and the differences that they make across
different devices may be one source of device effects.



The second source of bias outlined by Sudman and Bradburn is interviewer role
behaviour. This refers to the degree to which the interviewer carries out the role
demands. Even in the case of the highly standardised interview protocol, an
interviewer may deviate from the specification. This is perhaps the source of bias
where the parallel for device effects is easiest to consider. In terms of device effects,
the direct comparison would be where some characteristic of a specific device

means that the survey task does not function in the way it was programmed.

By way of illustration consider the example of a mobile device with a lower
specification of Random-Access Memory (RAM) that may run out of available
memory whilst completing some portion of the survey process. If this were to
happen, this may result in the survey app crashing, meaning the data collecting
process is halted. Deviations such as this represent a second potential source of

device effects.

The final source of bias outlined by Sudman and Bradburn are the extra-role
characteristics of the interviewer. These are those characteristics that the interviewer
possesses which are separate from their role as an interviewer that nevertheless
may affect the interviewer-respondent relationship, particularly through the
respondent’s perception of the interviewer. Race, social class, educational level,
age, and religious, ethnic, political, or other affiliations are offered as examples of
such characteristics.

In terms of device effects, the direct comparison would be the indirect effect of
device features upon data collection. This would most likely occur as a result of the
respondent’s pre-existing relationship with, and perception of, their mobile device. If,
for example, a respondent finds it easy to take a picture using their mobile device
they may be more motivated to do so, than a respondent who finds this hard to do.
Ultimately, just as in the case of the extra-role characteristics of interviewers, the
potential for bias only occurs during the interaction with the respondent. It is not the
device or the interviewer who is the sole cause of the bias, but the respondent’s
reaction to the device or interviewer. Such effects of the respondent’s attitude

towards their device therefore makes up a third class of potential device effects.



2.3 Interviewer effects methodology

As well as informing how to conceptually consider device effects, the comparison to
interviewer effects can help to inform how to study device effects. The use of
multilevel models to account for the clustering effect of respondents within
interviewers has long been established (Wiggins, Longford et al. 1990, Pickery,
Loosveldt et al. 2001, West and Olson 2010, Jackle, Lynn et al. 2011, West and
Elliott 2014, West, Conrad et al. 2018). In addition to the second-level of analysis to
model the clustering effect of interviewers, some research has included a third level,
measuring the clustering effect of the area a respondent lives in (Schnell and Kreuter
2005). Attempts have been made to disentangle interviewer effects from area effects
by fitting cross-classified models with interviewer and area as higher levels that are
not hierarchically nested (O’Muircheartaigh and Campanelli 1998, O'Muircheartaigh
and Campanelli 1999, Durrant, Groves et al. 2010, Brunton-Smith, Sturgis et al.
2017).

Most of these studies have used some variation of intra-interviewer correlations (11C),
or interviewer design effects, to assess the clustering effect of interviewers. These
measures are related to one another and are derived from the decomposition of
variance in the multilevel models. The size of reported intra-interviewer correlations
has been quite varied. O’Muircheartaigh and Campanelli (1998) suggest that
correlations of larger than 0.10 are rare. In their research they found correlations
ranging from 0.06 — 0.17. Jackle, Lynn et al. (2011) reported 1ICs ranging from 0.04
—0.07. West and Olson (2010) cite a wider range of observed IICs ranging from 0.01
—0.12. It has been suggested that even relatively small interviewer clustering effects
can have large impacts when estimating statistics. In both cases, assuming an
average of 30 respondents per interviewer, an IIC of 0.01 would result in a twenty-
nine percent increase (West and Olson 2010), and an IIC of 0.02 would result in a
fifty-four percent increase (West, Conrad et al. 2018) in the variance of an estimated

mean.

Struminskaya, Weyandt et al. (2015) have used multilevel models to examine device
effects when comparing surveys responses completed on PCs, tablet and
smartphones. However, the multilevel models they fitted did not include the device

model as a level in the model. Instead repeated measures were the lowest level in



their models, clustered within individual respondents. They reported intra-respondent

correlations ranging from 0.16 to 0.62.

3 Data
3.1 Study designs

Three datasets are used for the analyses in this research. The main data set used is
the Understanding Society Spending Study, this was supplemented with data from
the Understanding Society Innovation Panel and some additional data collection
capturing characteristics of the devices that were used by respondents in the
Spending Study. Details of all three data sets can be found below.

3.1.1 Innovation Panel

The Understanding Society Innovation Panel (University of Essex. Institute for Social
and Economic Research 2018) is the experimental and methodological research
portion of the UK Household Longitudinal Study. The Innovation Panel is an annual
household panel survey with a stratified and clustered sample that is representative
of the Great British population south of the Caledonian Canal. Data from the ninth
wave of the study are used as covariates in the analyses presented in this research.
The wave nine (IP9) sample consists of remaining sample members from the original
sample along with respondents from two additional refreshment samples who have
participated from waves four and seven onwards. All household members aged
sixteen and over at the time of interviewing are considered eligible for annual
interviews. The ninth wave had a household response rate of 84.7% and an
individual response rate of 85.4% within responding households (Jackle, Al Baghal
et al. 2018).

3.1.2 Spending Study One

The Understanding Society Spending Study One (University of Essex. Institute for
Social and Economic Research 2018) was an inter-wave data collection task that
collected additional information about the expenditure of Innovation Panel members.
The first Spending Study took place between waves nine and ten of the Innovation
Panel. Data collection used an app that asked respondents in the study to use their

mobile devices (smartphones or tablets) to submit information on their purchases as



they made them. This app was developed by Kantar Worldpanel, with whom the

study was conducted in partnership.

Respondents were asked to submit data about their purchasing behaviour in one of
three forms: scanned pictures of receipts, taken using the mobile devices camera;
self-reports of purchases, including details of what category of item the purchases
were and for how much; or reports of days without spending. More details can be
found in the Spending Study One user guide(Jackle, Burton et al. 2018). Three sets
of additional questionnaires were asked of respondents: a registration questionnaire
at the start of the study; a series of end of week questionnaires throughout their time
in the study; and an end of project questionnaire after they had finished participating.

All adult members (aged 16 and over) of households where at least one person
responded at IP9 were included in the issued sample for Spending Study One;
except those known to have refused to take part in the Innovation Panel long-term.
Incentives were given to respondents in the form of Love2Shop gift vouchers or gift
cards. The amount respondents received varied depending on their level of
participation in the study. An initial incentive was offered for completing the
registration survey and downloading the app, this had two experimental conditions,
£2.00 and £6.00. Allocation to the incentive treatments was made at the household
level. An additional £5.00 incentive was offered to a random subsample of all
members of half of all households where nobody had participated by the third week
of the study. Respondents received an incentive of 50p for every day they used the
app. Completion of each end of week survey earned respondents an additional 50p
and completion of the end of project survey earned £3.00. To maximise compliance
with the task across the month, an additional incentive of £10.00 for using the app for
31 consecutive days was offered. When this additional incentive was administered,

this criterion was relaxed to participation on 27 out of 31 days.

There were 274 people who used the Spending Study app at least once. This
constitutes a response rate of 11.5% amongst the 2,383 Innovation Panel members
who were invited to participate. For the purposes of the analyses presented here,
this sample was constrained to the 255 respondents for whom IP9 data on all the
respondent characteristics used as predictors was available. Those models not

including the respondent characteristics were also fitted using all 274 respondents;



there was little to no difference in the results, so only results from the constrained

sample are presented here.

3.1.3 Device characteristics data

The make and model of the device used to complete each app use was captured
within the main Spending Study One app. There were 97 different makes and model
of device amongst all 274 Spending Study respondents, and 90 makes and models
used by the analytical sample of 255 respondents. The Spending Study app also
captured the Operating System (OS). Whether the device was a tablet or
smartphone was then derived during the data cleaning process for the Spending
Study.

Additional data collection then took place to capture specific characteristics of each
of these mobile devices. This data collection task was completed using the Amazon
Mechanical Turk (mTurk) micro-task crowdsourcing platform. The mTurk platform
allows the creation of so-called Human Intelligence Tasks (HITs), which harness the
labour supplied by the platform’s workers to complete them. There has been
growing interest in using Amazon mTurk for social science data collection (e.g.
Paolacci, Chandler et al. 2010, Buhrmester, Kwang et al. 2011, Berinsky, Huber et
al. 2012, Mason and Suri 2012). This has also extended to using mTurk for survey
methodology data collection (Antoun, Zhang et al. 2016, Keusch and Yan 2017).

Screenshots of the HIT used to collect the additional device characteristics can be
found in Appendix A. Workers were presented with the make and model of a given
device®, and asked to provide values for a series of device characteristics. Workers
were paid $0.25 for each HIT they completed. Five device characteristics were
collected using the HIT: the device’s Random-Access Memory (RAM) (measured in
gibibytes or mebibytes), processor speed (measured in hertz), camera quality
(measured in megapixels), storage space (in gigabytes or megabytes) and screen

size (measured diagonally in inches). Some cleaning was needed to extract the

! The device names captured for iOS devices were the internal machine identifiers used by Apple,
these correspond to the more commonly known product names, for example iPhone7,2 : iPhone 6.

These were converted before the HIT was posted to make identification by mTurk workers easier.
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numerical value, and units from the text input by the workers when completing the
HITs. However, this was relatively straightforward to complete using Boolean string
matching, or regular expressions. Of these five measures, only the device’'s RAM
and camera quality were ultimately included as measures in the models presented

here.

Screen size was not included, as there was limited variation of screen sizes amongst
tablets, or amongst smartphones. The device type was the more important
distinction, as opposed to the size of the screen, including this as a continuous
measure resulted at times in an apparent linear effect, when in fact the important

relationship was whether a device was a smartphone or tablet.

The storage space variable that was captured was ultimately excluded from analysis
as this was a very imprecise measure. The challenge when capturing storage space
is that the same model of device might be available in variants with different default
storage capacity; for example, the Apple iPhone 6 is available in 16/32/64/128 GB
versions. Whilst it was possible to capture the full range of available storage
capacities using mTurk, it was not possible to determine exactly which variant the
devices used in the Spending Study were, or whether two devices that were the
same model had different storage capacities. This issue was further compounded by
the fact that some devices allow the use of additional memory cards to provide extra
storage. Finally, even if the full storage capacity of the device could be identified, it is

the amount of available storage on the device that would actually affect performance.

The processor speed measure captured was problematic because a number of
newer mobile devices use multiple cores in their CPUs. Therefore, a large number of
the reported processor speeds only captured the performance of one core, not the
total performance of the processor. Consequently, an alternative source of data for
the performance of device processors was used, details of this can be found in the

measures section below.

3.2 Multi-level structure

Throughout the analyses in this research the data are considered to have a four-
level cross-classified structure. This structure is illustrated in the classification

diagram in Figure 1.
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PSU

Device Participant

App use

Figure 1. Classification diagram for the four-level cross-classified data structure.

The lowest level considered is the individual app uses. Each individual app use is
then nested within two second-level clusters. The first of these is the specific model
of device that was used to complete the app use. For example, all app uses
completed on Apple iPhone 6s would be in the same cluster. The second is the
respondent who completed that app use. Finally, the Primary Sampling Unit (PSU) to
which the respondent belongs is also included to account for the complex clustered
sample design of the Innovation Panel. There are no variables measured at the PSU
level included in the analyses. Variables measured at all three of the other levels are
included. Household was also considered as an additional level, but models fitted to
include households suggest there was little clustering effects of households, and

therefore the more parsimonious four-level structure is presented here.

4 Measures

4.1 Data quality indicators - App use level

Ultimately, what is f interest in this research is the contribution of systematic error or
biases that the device used produces in estimates generated from the data collected.
Without validation of the true measure (in this instance a total record of true
expenditure across the duration of the study) it is necessary to consider the
contribution to error indirectly. As the error itself is unobservable it is instead useful
to examine the effect of device upon observable measures that are assumed to be

correlated with the degree of error in estimates produced using the data. Four data

12



quality indicators have been identified and are outlined below. Descriptive statistics

for all four measures can be found in Table 1.

Table 1. Descriptive statistics of app use outcomes.

App use duration (seconds) Mean 31
(n=10621) sSD 26
Min 3
Median 24
Max 172
Suspected outlier in terms of Yes 3%
app use duration .
(n=10985) No 7%
Type of app use Receipt scanned 48%
(n=10985) Purchase without receipt 30%
Report of nothing bought 22%
Was the receipt fully readable Yes 92%
(n=5263) No 8%
Number of items on the receipt Mean 7
(n=4790) sSD 10
Min 1
Median 3
Max 129

4.1.1 App use duration

Response times have previously been examined as a data quality indicator
(Malhotra 2008, Yan and Tourangeau 2008, Galesic and Bosnjak 2009). Typically,
this has involved the assumption that shorter response times are more likely to be
indicative of satisficing, and as a result associated with increased errors. However,
as is noted by Malhotra, the relationship between response time and data quality is
not easily disentangled. For example, when considering the effect of the device used
on app use duration it does not make sense to suggest that faster devices result in

lower quality data. In contrast, it seems likely that the opposite may be true, that
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slower devices may in fact result in poorer quality data. The justification for this is
that slower devices may contribute to an increased perception of the time it takes to
participate. The negative impact of longer perceptions of time taken to complete a
survey on response propensity is well documented (Collins, Sykes et al. 1988,
Yammarino, Skinner et al. 1991, Dillman, Sinclair et al. 1993, Groves, Singer et al.
1999, Crawford, Couper et al. 2001, Galesic and Bosnjak 2009, Roberts, Eva et al.
2010). Considering this in the context of the Spending Study, if a device results in
app uses taking on average longer, the assumption is that this means that it is less

likely the respondent using that device will report all their purchases.

The duration of app uses was measured in seconds. A number of extreme
responses were observed, and the possibility that these may be outlying responses
was considered. Using the same method as in Read (2018) an adjusted boxplot was
used to classify outliers. This method takes into account the skewness of the
distribution by using the medcouple (Brys, Hubert et al. 2004), a robust measure of
the skewness of the data. This is applied to a boxplot as suggested by Hubert and
Vandervieren (2008) by to adjust the interval of the boxplot to take into account the
skewness of the data. All data points outside the adjusted interval are then coded as
outliers. These outliers are excluded for those models in this research that regress
app use duration on predictors. Separate models are then fitted to examine the
associations between different predictors and the probability of an app use being an
outlier in terms of duration. The mean app use duration was 31 seconds and the
percentage of app uses with outlying durations was 3.39 percent.

4.1.2 Type of app use

A second data quality indicator is the type of app use. The three app use types were:
taking a picture of a receipt, manually entering data about a purchase, or reporting
nothing bought that day. Here, the assumption is that app uses that are reports of
purchases made without receipts, or of nothing bought, may be more likely to
represent increased error if the “true” response should have been a scanned receipt.
One potential issue is that of course both of these categories of app uses can be
valid responses and may not represent an increase in error. Therefore, a higher
proportion of these types of app use clustered within a given respondent may

represent a true difference in purchasing behaviour. In contrast, there is no reason to
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believe that the device should have a direct effect on the type of app use, therefore
any observed effect would suggest a bias towards a certain type of app use. This
measure is included as a binary indicator of whether the app use was a scanned
receipt, (a value of 0) or one of the other two types of app use (assigned a value of
1). Forty-eight percent of app uses were scanned receipts, and fifty-two percent of

app uses were either purchases without receipts, or reports of nothing bought.

4.1.3 Image quality

A third data quality indicator analysed is the quality of the images produced by
respondents when scanning their receipts. Here the data quality assumption is more
easily understood, namely that poorer quality images increase the potential for error,
either because information cannot be collected from them, or because the
information collected may be incorrect. This measure is a binary indicator with fully
readable receipts being coded as zero. Receipts which could not be fully read, either
because part of the receipt was unreadable, the whole receipt was unreadable, or
there was not an image captured, were coded as one. Ninety-two percent of receipts
were fully readable, and eight percent were either partially readable, unreadable, or
missing. For both this measure, and the number of items on receipts (below), the
number of respondents and devices is slightly reduced as some respondents never
submitted a scanned receipt. The number of respondents and devices for these

measures is reported in Table 4 in the Results section.

4.1.4 Number of items on the receipt

The final data quality indicator is the number of items that were on the receipt. Once
again, this is a variable that might reasonably be expected to vary as a direct effect
of respondent characteristics, as different purchasing behaviour will affect the
composition of receipts. However, as is the case with the other data quality
indicators, there is no reason to suspect that the characteristics of the device used
should have a direct effect on the number of items on a receipt. Therefore, the
assumption here is that shorter receipts as a result of device characteristics may
represent a downwards bias caused by the device used. The mean number of items

on receipts was 7.
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4.2 Device Characteristics — Device level

4.2.1 Operating System (OS)

The first of five device characteristics that was identified as possibly affecting data
quality in the context of the Spending Study was the Operating System (OS).
Descriptive statistics for all five device characteristics are in Table 2. The app was
available for iOS and Android, and which OS the respective device was using was
captured within the app itself. Differences in the software architecture of the two
operating systems were the main reason that it was believed that the OS of the
device used may affect data quality. For example, iOS and Android differ in how they
handle memory allocation, which can have a significant effect on both app speed
and processing performance (Rinaldi 2017, Lee 2018, Brownlee 2019). There are
also differences in the demographics of iOS and Android users, with men being
found to be slightly more likely to be iOS users than women (Fluent 2016). Amongst
the device models used in the Spending Study, 29% were iOS devices and 71%

were Android devices.Mobile device type

The second device characteristic considered was the type of mobile device used,
meaning whether the device was a smartphone or a tablet. Existing research has
found differences between smartphone and tablet responses in surveys; it has been
suggested that responses to surveys using tablets are at times more similar to PC
responses than smartphone responses (Struminskaya, Weyandt et al. 2015). The

type of mobile device used to complete the app uses was captured within the app.

In terms of the Spending Study, the difference in size between tablets and
smartphones was considered relevant for two reasons. The first of these is that the
increased size of tablets may potentially make it more difficult to take photographs,
as they are potentially bulkier and more cumbersome for respondents to use to take
the photograph. However, the increased screen size may also have made it easier to
see the photograph as it was being taken, potentially resulting in higher quality
images. As was noted above, screen size itself was considered as a variable for the
models estimated in this paper, however there was little variation in screen size
within tablets, or within smartphones. Twenty-two percent of devices were tablets,

and seventy-eight percent of devices were smartphones.
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Table 2. Descriptive statistics for the five device characteristics.

Device

models

(n=90)

Operating system Apple 29%
Android 71%

Device Type Smartphone 78%
Tablet 22%

RAM (Gibibytes) Mean 1.79
SD 0.99

Min 0.50

Median 1.50

Max 4.00

Camera quality (Megapixels) Mean 9.57
SD 5.01

Min 0.70

Median 8.00

Max 20.70

Processor performance score Mean 2.13
SD 1.54

Min 0.21

Median 1.63

Max 8.98

4.2.3 Camera quality

The third device characteristic used as predictor of data quality was the quality of the
main camera on the mobile device, measured in megapixels. This was coded in the

mTurk data collection. Each device was coded by three different workers, and then
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methodology created for assessing inter-coder reliability was adopted to assess the
consensus of the three coders. For 80% of devices the three workers were in perfect
agreement as to the value of the quality of the camera. The corresponding kappa
statistic of k = 0.83 was above the 0.80 threshold describe as “almost perfect’
agreement (Landis and Koch 1977). Similarly, the value for Krippendorff's alpha was
above the recommended 0.80 threshold (Krippendorff 2004) at a = 0.84. For each
device the modal camera quality value for the three coders was selected.? The mean

camera quality of devices was 9.57 megapixels.

4.2.4 Random-Access Memory (RAM)

The fourth device characteristic was the amount of Random-Access Memory (RAM)
available on the device. This is the amount of available immediate storage for
software that is running. This was coded in the mTurk data collection. This was
measured in gibibytes.? For the RAM measure all three coders were in perfect
agreement 96% of the time and both the kappa statistic of k = 0.98, and
Krippendorff’s alpha ata = 0.95 suggest there was a high level of agreement
amongst coders. Again, for each device the modal RAM value for the three coders

was selected.* The mean RAM of devices was 1.79 GiB. The available RAM on

2 For two models of device all three coders were in disagreement about the camera quality value, in
these cases the value was manually obtained from the manufacturer’s website: Samsung SM-T210 -
http://www.samsung.com/latin _en/consumer/mobile-devices/tablets/galaxy-tab/SM-T2100ZWATPA,;
Samsung SM-T530" - http://www.samsung.com/uk/tablets/galaxy-tab-4-10-1-t530/SM-
T530NYKABTU.

% In both the discussion of the HIT, and in much general discussion of RAM the unit measured is
typically referred to as gigabytes, however as RAM is measured in multiples of bytes, which is a
binary measure, the more technically correct term gibibytes (GiB) is used throughout International
Electrotechnical Commission (1999). IEC 60027-2 Amendment 2: Letter symbols to be used in

electrical technology - Part 2: Telecommunications and electronics.

* For one model of device all three coders were in disagreement about the RAM value, therefore the
value was manually obtained from the manufacturer’s website: LGE LG-D855 -

http://www.lg.com/uk/mobile-phones/lg-D855.
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mobile devices only comes in a select number of values, measured in half or whole
gibibyte increments. As a result, alternative specifications of models fitting RAM as a
series of categorical variables was considered. These ordinal models produced met
the proportional odds assumption, and as RAM is technically a continuous measure

the continuous variants of the models are reported.

4.2.5 Processor performance

As was mentioned earlier, the processor performance measure captured in the
mTurk data collection did not account for newer mobile devices having multiple
cores, therefore it was necessary to obtain an alternative measure of this variable.
This was scraped from the Geekbench (2018) database of comparative processor
performance scores using an R script. Geekbench provide industry leading
benchmarks of processor scores where Intel Core i7-6600U processor is used as the
baseline with a score of 4,000 points. Geekbench’s database contains multiple
records for a given device; the median value for a given device was selected. Double
the score represents double the processing performance. The large range of the
original measure meant that interpretation of coefficients was difficult, as a one-unit
change in processing performance did not really reflect the wide range of scores.
Therefore, the decision was made to divide all the processor scores by one thousand

to make interpretation easier. The mean processor performance score was 2.13.

4.3 Respondent Characteristics — Respondent level

One of the challenges in examining device effects is disentangling the direct effect of
device characteristics from the indirect effects of respondent characteristics as a
result of selection. Lugtig and Toepoel (2015) suggest that selection effects
accounted for the majority of the observed device effects in their study. It should be
noted however, that this finding was based on respondents who had completed
successive waves of a survey on different types of device. It is less clear whether
this absence of direct device effects might also be observed when respondents are
required to complete a study using a mobile device (without a desktop alternative).

As was noted earlier, the device the respondent uses to complete a survey task is
not random, and therefore device characteristics are not independent of respondent

characteristics. As a result, the potential exists for any observed direct effects of
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device characteristics to in fact be indirect effects of respondent characteristics, if

those respondent characteristics are not adequately controlled for when modelling.

Five respondent characteristics have been included in the models presented later in

this paper. These have been selected based on a combination of: existing literature

that suggests they may be related to device selection and established respondent

characteristic controls in a previous paper on device effects by Struminskaya,

Weyandt et al. (2015). All five characteristics are taken from the ninth wave of the

Innovation Panel. Descriptive statistics for the respondent characteristics can be

found in Table 3.

Table 3. Descriptive statistics for respondent characteristics.

Respondents

(n= 255)

Sex Male 39%
Female 61%

Age (years) Mean 43
SD 15

Min 16

Median 42

Max 86

Equivalised gross monthly Mean £2344
household income (£) SD £1242
Min £116

Median £2146

Max £7921

Employment status Management 36%
Intermediate 15%

Routine 18%

Unemployed 4%

Retired 15%

Inactive 11%

Highest level of education Degree or higher 55%
Lower than a degree 45%

4.3.1 Sex

The first of these respondent characteristics was the respondent’s sex. This has

previously been found to be related to device selection (Karjaluoto, Karvonen et al.

2005). Sex was also one of the respondent characteristics controlled for by

Struminskaya, Weyandt et al. (2015). Male respondents were coded as zero and
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female respondents were coded as one. Amongst the analytical sample 39% of

respondents were male, and 61% percent of respondents were female.

4.3.2 Age

The second respondent characteristics was their age. Age has previously been
found to be a predictor of a respondent’s technical ability using a mobile device
(Loges and Jung 2001). Struminskaya, Weyandt et al. (2015) found age to be a
significant predictor of all of the data quality indicators they examined. This was a
continuous variable measured in years, and the mean age of respondents in the

Spending Study was 43.

4.3.3 Equivalised gross monthly household income

The respondent’s level of household income was also included as a relevant
respondent characteristic. No previous literature was found that provided evidence
to suggest that level of income affects device selection. Price however has been
found to be a factor in device selection (Sarker and Wells 2003), so it seems
plausible that level of income would influence a respondent’s decision about how
much they could afford to spend on a device. It also seems likely, given the subject
of the Spending Study, that level of income may affect data quality indicators, for
example the number of items on receipts. Gross monthly income was equivalised
using the modified OECD scale from the ninth wave of the Innovation Panel to
account for differences in the number of household members. The mean equivalised

gross monthly household income was £2344.

4.3.4 Employment status

Social class has previously been found to be related to device selection, with
different factors being important to white-collar and blue-collar workers when making
device selection decisions (Karjaluoto, Karvonen et al. 2005). Struminskaya,
Weyandt et al. (2015) found differences in data quality indicators in a mobile survey,
based on whether a respondent was in paid employment. Employment status was
measured using the three category NSSEC classification, which classifies those in
paid employment into management (36% of respondents), intermediate (15% of

respondents) and routine (18% of respondents) plus categories for respondents who
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were unemployed (4% of respondents), retired (15% of respondents) and inactive

(11% of respondents).

4.3.5 Level of education:

The final respondent characteristic included was the level of education of
respondents. This was also found to be a significant predictor of data quality
indicators in a mobile survey (Struminskaya, Weyandt et al. 2015). This was
categorised into those whose highest level of qualification obtained was a degree or
higher (55% of respondents), and those whose highest level of qualification was less

than a degree (45% of respondents).

5 Results

RQ1: What proportion of the variance in data quality indicators can be attributed to

the device model used to participate, and what proportion to the respondent?

To decompose the proportion of variance that can be attributed to the device used to
participate, a series of five four-level cross-classified regression model were fitted
using Markov chain Monte Carlo (MCMC) methods of estimation. These models
were estimated using MLwiN (Charlton, Rasbash et al. 2017) using the software’s in-
built MCMC estimation methods (Browne 2017). All models were fitted with a
monitoring chain of 50,000 iterations, a burn in length of 1,000 iterations and with a
thinning factor of one. For the two continuous data quality indicators, duration and

number of items on the receipt, the equation for the models is as follows:
Yijkt = Bo+ for + Vok + Ugji T €ijki (1)

where ;i is the value of the respective data quality indicator for a given app use i
performed by a given respondent j using device model k within PSU [. The
coefficient B, is then overall mean across all app uses, all respondents, all device
models, and all PSUs. The random PSU effect is f;;, the random device effect is
vok, the random effect of the respondent is u,;; and e; j; is the residual difference of
individual app uses. All four of the random terms are assumed to be normally
distributed such that:fy; ~ N(0,0%f), vor ~ N(0,0%,), ugji~ N(0,0%,) and

eijii~ N(0,0%,).
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For the three other data quality indicators logistic models are fitted with the

equational form:
logit(miji) = Bo + for + Vo + Ugji (2)

where logit(m;jy,) is the log odds of the occurrence of a value of one for the
corresponding data quality indicator. The random parts of the model f;;, vo, and u,j;
retain their meaning from equation 1, namely that they are the cluster specific
effects. As such, these three terms hold the same assumptions as in equation 2.
However, the logistic function, by definition (see Snijders and Bosker 2012 for more
details, Hox, Moerbeek et al. 2017), fixes the variance of the lowest level residuals
o2, such that 62, = n?/3 =~ 3.29. Results from all five models that were fitted are

presented in Table 4.

Table 4. Results of four-level cross-classified regression models of the data quality
indicators with no predictors.

Duration Other activity Low quality Number of

Duration . . :
outlier types image items

o VPC o VPC o VPC o VPC o VPC

PSU

o 579 0.01 002 001 003 001 026 005 036 0.00
0

Efv'ce 52.81 0.08 0.13 003 032 006 120 022 023 0.00
v0

SfSpO”de”t 68.06 0.10 053 013 195 0.35 064 0.12 1049 0.10
u0

szes'd“a' 564.98 0.82 3.29 0.83 3.29 059 329 061 96.02 0.90
e

PSUs 90 90 90 89 89

Devices 90 90 90 84 83

Respondents 255 255 255 233 231

App uses 10621 10985 10985 5263 4790

DIC 97656 3086 12463 2519 35599

The decomposition of the amount of variance apportioned to each of the levels in the
model can be achieved by examining the Variance Partition Coefficient (VPC), which
is the proportion of the total variance that is explained by each of the levels. As an

example, to calculate the VPC for PSUs the following equation is used:
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The variance for each level can then be substituted into the numerator of the
equation to calculate a level specific VPC. The VPC is similar to an intraclass
correlation coefficient (of which intra-interviewer correlations used in the interviewer
effects literature is an example). In many circumstances the two are analogous to

one another.

However, Leckie (2013) makes the distinction between the two, stating that the VPC
reflects the proportion of the response variance the model attributes to each level in
the model. In contrast, the ICC measures the expected homogeneity between two of
the lowest level units (in this case app uses), based on their membership to each of
the higher-level units. In a hierarchically nested model, without random effects for
predictor variables, these two measures will be the same (as is the case in much of
the interviewer effects literature). However, in a cross-classified model, the different
configurations of possible memberships to higher level groups means that the ICC is
not equivalent to the VPC, and in fact there will be more possible ICCs than VPCs.
For example, the ICC for two app uses that share a device and a respondent will be
different than that for two app uses that are completed using the same device model,
but by different respondents. To allow comparability to the interviewer effects
literature, and to enable device effects to be assessed, the VPC was chosen to be
reported throughout.

In terms of durations of the app uses, it was expected that the level of variance that
was attributed to the respondent would be quite a bit larger than that which is

attributed to the device used. However, this was not the case, with the proportion of
the variance attributed to the respondent being 10% and the proportion attributed to

the model of the device being used being 8%.

The proportion of variance in whether the duration was an outlier or not was in line
with the expected result. Namely, that a greater share (13%) of the variance was
attributed to the respondent than to the device (3%).
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It was expected that for the type of activity that is performed a far larger share of the
variance would be attributed by the model to the respondent; at 35% this was the
case. However, that 6% of the variance is attributable to the device used still
suggests that the model of device is associated with what type of app use each app

use is.

The share of the variance that was attributed to the device model was highest for the
guality of the images produced, at 23%. This compares to just 9% of the variance
being attributable to the respondent for this indicator. This was unexpected, whilst it
was considered that the device used may be associated with the quality of the
images produced, it was not expected that almost a quarter of the variance in the

measure would be attributable to the device used.

Finally, almost none of the variance (<1%) in the number of items was attributed to
the device used, in comparison the share of the variance attributed to the respondent
was 10%. This was unexpected, as it was anticipated that some of the variance in
this measure would be associated with the model of device used. However, from a
data quality perspective this is perhaps reassuring as it suggests there are not

device effects downwardly biasing this measure.
RQ2: Are specific device characteristics associated with data quality indicators?

To examine the effects of specific device characteristics the five characteristics
measured at the device level were introduced to each of the five models. The
resulting models are the models presented on the left-hand column under each data

quality indicator in Table 5.
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Table 5. Results of four-level cross-classified regression models of the five data quality indicators with device and respondent characteristics as
predictors.

Duration Duration outlier™  Other activity types’  Low quality image’ Number of items
B B OR OR OR OR OR OR B B
Android 6.09** 4.12* 0.56** 0.54** 0.87 0.92 3.14%** 2.91** 0.60 0.65
(2.06) (1.75) (0.24) (0.27) (0.22) (0.27) (0.34) (0.36) (0.73) (0.75)
Tablet 7.06** 3.47 0.84 0.72 1.11 1.19 2.25* 2.16* -1.50* -1.61*
(2.50) (2.09) (0.28) (0.30) (0.30) (0.31) (0.41) (0.44) (0.68) (0.80)
Camera quality 0.11 -0.14 1.00 1.00 1.01 0.99 1.01 1.01 0.00 0.01
(0.27) (0.23) (0.03) (0.03) (0.03) (0.03) (0.05) (0.05) (0.11) (0.11)
RAM -4.78** -2.70* 1.09 1.16 1.28 1.26 0.49** 0.50* -0.65 -0.48
(1.55) (1.28) (0.19) (0.21) (0.19) (0.18) (0.31) (0.32) (0.63) (0.65)
Processor -1.01 -0.74 0.84* 0.84 1.00 0.94 0.94 0.94 -0.34 -0.21
(0.71) (0.62) (0.10) (0.12) (0.08) (0.08) (0.13) (0.14) (0.27) (0.28)
Female 0.20 1.04 0.73* 1.14 1.86***
(0.99) (0.18) (0.17) (0.21) (0.60)
Age (years) 0.20%** 1.00 0.97*** 1.02 0.04
(0.05) (0.01) (0.01) (0.01) (0.03)
Employment status
Ref: Management
Intermediate 1.49 1.09 0.64* 0.56 0.01
(1.45) (0.24) (0.24) (0.35) (0.84)
Routine 1.71 1.11 0.77 0.76 -0.56
(1.44) (0.25) (0.24) (0.36) (0.87)
Unemployed 0.85 1.43 1.36 1.11 -1.96
(2.87) (0.47) (0.49) (0.74) (1.81)
Retired 7.39*** 1.85* 1.12 0.61 -0.57
(2.02) (0.32) (0.31) (0.46) (1.13)
Inactive 4.32** 0.97 0.82 1.03 -0.60

(1.79) (0.32) (0.29) (0.43) (1.10)
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Degree or higher 0.52 1.12 0.63** 0.81 -0.11

(1.05) (0.17) (0.18) (0.24) (0.62)
Income 0.00 1.00 1.00 1.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)
App use type
Ref: Scanned receipt
Purchase without -11.08*** 0.65***
receipt (0.53) (0.13)
Report of nothing -33.23%%* 0,52+
bought (0.58) (0.16)
Constant 36.72%  36.35%*  0.05%*  0.06"*  0.84 7119  0.10**  0.06** 0.08%*  6.59%*
(2.45) (3.51) (0.28) (0.59) (0.28) (0.47) (0.44) (0.91) (0.85) (1.9)
¢ VPC ¢ VPC o VPC o VPC ¢ VPC o VPC o VPC ¢ VPC & VPC o VPC
F;SZ’;J 5.79 0.01 4.950.01 0.02 0.00 0.02 0.00 0.15 0.04 0.10 0.03 0.32 0.07 0.50 0.10 0.36 0.00 0.40 0.00
0
?EV'Ce 52.81 0.08 16.96 0.03 0.13 0.03 0.18 0.04 0.23 0.05 0.30 0.07 051 0.12 0.80 0.15 0.15 0.00 0.15 0.00
v0
Ezes'oo”de”t 68.06 0.10 65.51 0.10 0.45 0.12 0.63 0.14 1.34 0.32 1.22 0.30 059 0.14 057 0.11 9.99 0.09 9.98 0.09
uo0
CF:ZeS'd“a' 564.98 0.82 565.48 0.87 3.13 0.84 3.67 0.82 2.40 0.58 2.44 0.60 2.82 0.67 3.43 0.65 96.02 0.90 95.89 0.90
e
PSUs 90 90 90 90 90 90 89 89 89 89
Devices 90 ) 90 90 90 90 84 84 83 83
Respondents 255 255 255 255 255 255 233 233 231 231
App uses 10621 10621 10985 10985 10985 10985 5263 5263 4790 4790
DIC 97661 94741 3086 3064 12466 12465 2511 2512 35598 35596

Notes: *p<0.05, ** p<0.01, *** p<0.001; 1 Coefficients and variances rescaled for logistic models to allow comparison of nested models as recommended
by (Snijders and Bosker 2012, Hox, Moerbeek et al. 2017); Standard errors in parentheses.
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As before, the models were fitted in MLwiN, using the same MCMC estimation
conditions as those fitted in RQ1. The addition of the device characteristics means

that for continuous outcomes equation one becomes:

Yijkt = Bo + XBr + for + Vor + Ugji + €ij (4)
and for binary outcomes equation two becomes:

logit(mij) = Bo + XBr + for + Vo + Uoji (5)

where in both cases Xp is the five device level predictor variables and their
corresponding coefficients. The assumptions about the normality of the random

terms, as expressed in equations two and four remain unchanged.

For the logistic models, coefficients and variances have been rescaled for logistic
models to allow comparison of nested models as recommended by Hox, Moerbeek
et al. (2017) and Snijders and Bosker (2012). This overcomes the issue that because
logistic models fix the residual variance at approximately 3.29 the effects of fixed or

random effects may be inflated compared to the null model.

Throughout, the Deviance Information Criterion (Spiegelhalter, Best et al. 2002) is
used as a diagnostic tool for assessing model fit, that balances the likelihood of the
model with the number of estimators. A lower DIC indicates a better fitting model.
Overfitted models are penalised in terms of their DIC. The comparison made here is
between the DIC of the device characteristics models (the left-hand models for each

outcome in Table 5), and the DIC of the null models (presented in Table 4).

The time taken to complete app uses was statistically significantly associated with
three of the device characteristics included in the model. The first of these was the
Operating System, where app uses completed using Android devices were typically
associated with taking six seconds longer to complete (8 = 6.09, p < 0.01,

95% CI [2.05,10.13]). App uses completed on tablets were associated with app use
durations that were around seven seconds longer than those completed on
smartphones (8 = 7.06, p < 0.01, 95% CI [2.16,11.96]). Finally, increased RAM was
associated with typically shorter app use durations. Each additional gibibyte of RAM
a device had was associated with app uses completed on that device typically taking
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just under five seconds less to complete (f = —4.78, p < 0.01, 95% CI [—7.82,
—1.74]). Processor speed and camera quality were not statistically significantly
associated with app use durations. The DIC for the null model of duration was
97656, compared to a DIC of 97661 for the device characteristics model. This
suggests the model including device characteristics is potentially a poor fit for the
data. To explore whether this increased DIC was just the product of two of the device
characteristics seemingly not being predictors of duration, a model retaining just
those device characteristics that were statistically significant was fitted. This
produced a DIC of 97657. Overall, this suggests that whilst the device used does
affect the duration of app uses (as evidenced by the corresponding VPC of 0.08 in
RQ1) the device characteristics captured in this study do not seem to account for

these device effects very well.

In terms of outlying app use durations, there were two device characteristics that
were statistically significantly associated with a lower likelihood of app uses
completed using that device being an outlier. The first of these was operating
system, with Android devices having 44% lower odds of producing app uses with
outlying durations (OR = 0.56, p < 0.01, 95% CI [0.35, 0.90]). Similarly, increases in
processor performance were associated with a decreased likelihood of a device
producing outlying durations (OR = 0.84, p < 0.05, 95% CI [0.69, 0.99]). The other
three device characteristics were not statistically significantly associated with the
likelihood of app use durations being outlying. The DICs for the null model and the
device characteristics model were the same, 3086, indicating that the model with the
addition of the device characteristics is not an improvement in terms of how it fits the
data. Again, the reduced model with just statistically significant predictors was
considered, this produced a DIC of 3085. As with non-outlying durations, this
suggests that the device characteristics identified do not explain well the variance in
whether an app use was a suspected outlier in terms of duration. This perhaps is
less surprising than in the case of the non-outlying durations, as the null model
suggested that device only account for 3% of the variance in whether an app uses

had an outlying duration.
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For the third outcome, the app use type, none of the device characteristics modelled
were significant predictors of whether an app use was a scanned receipt, or a

manually entered purchase/report of nothing bought.

For the fourth outcome, the image quality, Android devices (OR = 3.14, p <
0.001,95% CI [1.61, 6.11]), and tablets (OR = 2.25, p < 0.05, 95% CI [1.01, 5.03])
were associated with an increase in the odds of receipt scan producing a low quality
image. Higher RAM was associated with lower odds of producing low quality images
(OR = 0.49, p < 0.05,95% CI [0.27, 0.90]). The DIC of the null model of image
quality was 2519, compared to a smaller DIC of 2511 for the corresponding device
characteristics model. This suggests that the addition of the device characteristics to

the model produced a better fitting model.

For the final outcome, the number of lines, the only statistically significant
association was the device type, with receipts scanned on tablets typically having
one less item on them than those scanned on smartphones (f = —1.50, p < 0.05,
95% CI [-2.83, —0.17]). The DIC for the null model was 35599, and the DIC for the
device characteristics model was 35598. Again, this suggests that the inclusion of
the device characteristics did not produce a better fitting model. This is not
particularly surprising as the VPC for the null model for this outcome suggested that
device accounted for less than one percent of the variance in the number of lines on

a scanned receipt.

RQ3: Do any associations between device characteristics and data quality indicators

remain after controlling for respondent characteristics?

To examine the potential effects of selection, respondent characteristics were
introduced to each of the five models. The resulting models are the models

presented on the right-hand column under each data quality indicator in Table 5.

The addition of the respondent characteristics means that for continuous outcomes

equation four becomes:

Yijkt = Bo + XBr + XBj + for + vor + Ugji + €k (6)
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and for binary outcomes equation five becomes:
logit(mjia) = Bo + XBi + XBj + for + Vor + Uojt (7)

where in both cases Xg; is the respondent characteristics variables and their

corresponding coefficients. The assumptions about the normality of the random
terms, as expressed in equations two and four remain unchanged. In addition to this,
for the models for duration and outlying durations, an additional control, measured at
the app use level, was introduced. This was what the type the app use was, included
as this was highly predictive of duration.

For all three device characteristics that were statistically significant predictors of app
use duration, the effects were diminished when controlling for respondent
characteristics. The first of these was the Operating System, where app uses
completed using Android devices were typically associated with taking four seconds
longer to complete (8 = 4.12, p < 0.05, 95% CI [0.69, 7.55]) when controlling for
respondent characteristics, as opposed to six seconds longer when not. App uses
completed on tablets were associated with durations that were around three and a
half seconds longer than those completed on smartphones (8 = 3.47, p > 0.05,
95% CI [—0.63, 7.57]), down from seven seconds when not controlling for
respondent characteristics. This measure was also no longer statistically significant.
Finally, each additional gibibyte of RAM a device had was associated with app use
durations that were a little under three seconds shorter (8 = —2.70, p < 0.05,

95% CI [-5.21, —0.19]), compared to just under five seconds shorter when not
controlling for respondent characteristics. This perhaps suggests that some of the
observed device effects may in fact be the result of selection. Three respondent
characteristics were significant predictors of app use duration: age (8 = 0.20,

p < 0.001, 95% CI [0.10, 0.30]), being retired (8 = 7.39, p < 0.001, 95% CI [3.43,
11.35]) and being otherwise inactive in terms of employment (8 = 4.32, p <
0.01,95% CI [0.81, 7.83]). The DIC for the model including respondent
characteristics dropped quite significantly, from 97661 to 94741. This suggests that
the addition of these respondent characteristics quite substantially improved the
goodness of the fit of the model.
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When it came to outlying app use durations, the device’s OS had been found to be a
significant predictor of whether an app use’s duration was outlying. This remained a
significant predictor, with very little change in the magnitude of the effect (OR = 0.54,
p < 0.01, 95% CI [0.32,0.92]). The processor performance of the device had been a
significant predictor in the device characteristics model, however the addition of the
respondent characteristics resulted in a nonsignificant result, though the coefficient
itself for this value remained unchanged. The only statistically significant respondent
characteristic was that retired respondents had a higher likelihood of having an
outlying app use duration (OR = 1.85, p < 0.05,95% CI [1.34, 2.46]). Again, the
decrease in the DIC (from 3086 to 3064) suggests that the addition of the
respondent characteristics improved the fit of the model.

Whilst none of the device characteristics included in the device characteristics
models for activity types were found to statistically significant predictors the
possibility was considered that a relationship may be seen when controlling for
respondent characteristics. Therefore, the respondent characteristics model was
fitted for this outcome. However, the device characteristics all remained statistically
nonsignificant predictors of activity type in this model.

Three device characteristics were significant predictors of image quality in the device
characteristics models. All three remained statistically significant when controlling for
respondent characteristics. The first two of these had slight reductions in the size of
their odds ratios: OR = 2.91, p < 0.01, 95% CI [1.44, 5.89] down from an odds ratio
of 3.14 for the OS; and OR = 2.16, p < 0.05, 95% CI [1.03, 4.55] down from an odds
ratio of 2.25 for tablets compared to smartphones. However, these reductions were
relatively small, and this stability of estimates between models supports that there
are some direct effects of these device characteristics. The coefficient for the third
significant predictor of image quality, the device’s RAM, changed very little OR =
0.50, p < 0.05, 95% CI [0.27, 0.94] compared to a value of 0.49 in the device
characteristics only model. None of the respondent characteristics were significantly

associated with image quality.

Finally, for the model of how many items were on scanned receipts the one
significant predictor from the device characteristics model, device type, remained
significant. The coefficient for this predictor changed little with the introduction of
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respondent characteristics f = —1.61, p < 0.05, 95% CI [—3.18,—0.04] (compared to
B = —1.50 previously). Gender was a significant predictor of the number of items on
scanned receipts, with female respondents typically submitting receipts that were
nearly two lines longer g = 1.86, p < 0.001, 95% CI [0.68, 3.04]. The slight
decrease in the DIC (35596 compared to 35598) suggests the model with both sets

of characteristics was a better fit for the data.

6 Discussion

This paper expands upon the existing device effects literature by moving beyond
comparing the broad categorisations of smartphone, tablet and PCs. Instead, this
paper is the first, to date, to consider the effects of the models of mobile devices
used for survey tasks. To achieve this, models were fitted that consider the potential
for homogeneity amongst survey responses that were completed using the same

model of mobile device.

This research also sought to explore what characteristics of mobile devices might be
contributing to any observed device effects. Some device characteristics were
captured in the data collection task (the Understanding Society Spending Study)
itself. However, to supplement this selected device characteristics were coded using
workers from Amazon mTurk to complete data collection. To the best of the author’s
knowledge this paper is the first example of using mTurk to collect paradata after the
main stage of data collection has been completed. It may be possible to harness
mTurk to collect other types of paradata, or perform other data processing tasks,
such as coding of textual responses. One of the major advantages of this would be

that mTurk represents a fast and inexpensive way of achieving this.

The results of RQ1 suggest that there were device effects in the Spending Study.
The device level VPCs ranged from <0.00 to 0.22, which is of a similar magnitude to
those reported within the interviewer effects literature (e.g. O’Muircheartaigh and
Campanelli 1998, West and Olson 2010, Jackle, Lynn et al. 2011). The evidence is
not strong enough to suggest that survey researchers should be as concerned about
device effects as they are about interviewer effects. However, based on these
results, it seems that further investigation into the potential for device effects is

warranted. For example, examining whether mobile device model clustering effects

33



are found when considering the kinds of data quality indicators traditionally examined
in questionnaire-based surveys, for example straightlining, acquiescence, mid-point

responding, item nonresponse, and primacy effects.

One of the results from RQ1 stands out, namely that nearly a quarter (0.22) of the
variance in the quality of the image was a result of the model of device used to take
the picture of the receipt. Whilst this measure if very specific to the context of the
Spending Study, it does suggest that device effects may be more of a concern when
mobile devices are being harnessed for enhanced data collection, for example
asking respondents to take photographs, collecting GPS data, collecting data from
wearables. This is potentially problematic, and also warrants further study, as the
ability to collect these kind of data has widely been regarded as an important part of

the future of role of surveys (Couper 2013, Link, Murphy et al. 2014).

From a survey design perspective, the potential of having to take into consideration
the wide variety of mobile devices available to respondents is daunting. This is
without taking into consideration the variety of models of desktops and laptops that
might also be used to respond to web surveys. The 90 devices used by the 255
respondents in the Spending Study suggest that even an approach of testing for the
most commonly used devices may not be sufficient (particularly as the pool of
commonly used devices is likely to change relatively frequently). Attempting to test a
survey app or website on physical versions of this many devices is unlikely to be
feasible, therefore alternative approaches may be needed. One approach may be to
use services such as Amazon’s AWS Device Farm, or Google’s Firebase Test Lab
that allow testing of apps or websites across many digital emulations of physical
devices.

With regards to RQ2, results of testing for specific device characteristics that are
related to data quality indicators were mixed. Two of the most important device
characteristics across the five measures were the Operating System and whether
the device was a tablet or smartphone. This is perhaps reassuring, as it suggests
that comparisons between categories, as has previously been the case in the
majority of the device effects literature, may suffice. However, a third characteristic,

the amount of RAM a device has, was also related to more than one data quality
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indicator. This is more problematic, though perhaps could be overcome through

careful consideration at the survey design stage.

As in RQ1, the quality of the images produced when scanning receipts was the only
outcome where there was particularly convincing evidence of device effects. That the
amount of RAM a device has was a significant predictor when the quality of the
camera was not was an unexpected result. The earlier consideration of how Sudman
and Bradburn’s (1974) conceptual framework for interviewer effects can be applied
to device effects perhaps sheds some light on this result. It seems possible this
finding is consistent with either the first or second source of bias. The first
explanation may be that some portion of the allocation of memory in the photography
process was assigned to the device to manage, and subsequently differences across
devices resulted in either poorer quality images being captured, or in some cases no
images at all. Alternatively, even if the allocation of RAM was adequately accounted
for when the app was programmed, it is possible that circumstances beyond the
control of the programmers resulted in devices running out of RAM. Ultimately, as
this study used a pre-existing app developed by a commercial partner, it is not
possible to examine the underlying software of the app to attempt to uncover which
of these accounts best explains this finding. However, it is felt that making the
parallel to interviewer effects is useful for considering how to think about device
effects both conceptually and methodologically. Further consideration of how the
device used to complete a web survey acts in the place of an interviewer may have

implications for best practices for designing web surveys.

To illustrate the potential magnitude of the combined effects of the device’s
characteristics of a specific device model it is useful to examine the change in odds
between devices that had a high and low likelihood of producing a low-quality image.
The device model with the highest odds of producing a low-quality image was the
Motorola Moto E, an entry-level budget smartphone targeted at first-time smartphone
buyers (Gibbs 2014). In contrast, the device model with the lowest odds of producing
a low-quality image was the Google Pixel XL, a device that was optimised for its
photography capabilities (Goodwin 2017). Both devices were Android smartphones,
the Moto E had a 5MP camera, 1GiB of RAM and a processor score of 0.63 and the
Pixel XL had a 12.3MP camera, 4GiB of RAM and a processor score of 4.08.
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Assuming all else (that is, the respondent) is kept constant, the difference in the
likelihood of producing a low-quality image between the two devices produces an
odds ratio of 48.75. This suggests the odds of a Moto E producing a low-quality
image are 4775% higher than on the Google Pixel XL.

This perhaps offers an overly extreme comparison. As a more conservative
comparison we can look at the devices with the lowest and highest likelihood of
producing a low-quality image amongst those devices that were used by more than
one respondent. Amongst these devices, the device model with the highest
likelihood was the Apple iPad 2 with Wi-Fi only capabilities, this was an iOS Tablet,
with a 0.70 MP camera, 0.5 GiB of RAM, and a processor score of 0.59. The lowest
was the Samsung Galaxy S7 edge, an Android smartphone, with a 12MP camera,
4GiB of RAM, and a processor score of 3.77. The device characteristic values for
these two devices are also documented in Table C1. The difference in likelihood
between these two devices produced an odds ratio of 20.62, which means the odds

of the iPad producing a low-quality image were 1962% higher.

In terms of assessing selection effects, the evidence from RQ3 is consistent with
some of the observed device effects being the result of selection. The image quality
outcome was the main indicator where the device effects did not seem to
substantially disappear when controlling for respondent effects. This seems to further
support the idea that device effects are most problematic for outcomes that
specifically rely on smartphone capabilities to perform tasks beyond those in a

traditional survey.

It is important to acknowledge that this study is not without its limitations. Just as in
Struminskaya, Weyandt et al. (2015) and Lugtig and Toepoel (2015) it is not possible
to fully disentangle device effects from selection effects. Both of these studies made
attempts to do this by looking at transitions in the devices used, however this was
not possible in the Spending Study, meaning the only way to try to disentangle these
two mechanisms is through the use of statistical controls. The success of identifying
and controlling for relevant respondent characteristics is likely to always be limited. It
is possible to identify far more potential respondent characteristics that may affect
device selection, the challenge comes in identifying characteristics for which

measures can be obtained, and that make good statistical controls, for example
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needing to be measured pre-selection (Gelman and Hill 2006). Preferably the
solution to this issue would be an experimental design, allocating respondents to

specific models of devices, however this is likely to prove prohibitive in terms of cost.

Secondly, without some form of validation for the data collected in the study it is
necessary to use indirect measures to look at data quality. A validation study that
examined the effects of device models on sources of error would be a useful addition

to the growing literature on device effects.

Finally, the Spending Study is a particular use of mobile devices for data collection.
The question remains how generalisable the findings presented here are to survey
research more broadly. In response to this, in the first instance, it seems likely that
the results will be generalisable both to studies that very closely resemble the
Spending Study (e.g. making use of cameras on mobile devices) but also for other
studies that make use mobile device features to collect data beyond that which is
traditionally captured in surveys, for example: tracking of health behaviours,
collecting, GPS data, or administering “in-the-moment” surveys. In addition to this,
hopefully the approach of using the literature on interviewer effects to inform how to
think both conceptually and methodologically about device effects may also be

relevant in more traditional survey settings.
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Appendix A: Amazon mTurk Human Intelligence Task Screenshots:

Mobile device data collection - Instructions (Click to collapse)

This task involves collecting data on a range of different models of mobile devices. The information that is required for each device is listed below:

+* Random Access Memory (RAM)
+ Default storage space

* Processor speed (CPU)

« Diagonal screen size

« Camera quality

There are further instructions above each input box stating the expected format for the response, including (where appropriate) the desired units of measurement.

Mobile device characteristics

Please record the following five characteristics for the mobile device model listed below.

Mobile device model:

3{device_model}

Please enter the Random Access Memory (RAM) for the mobile device: ${device model}.

This should be either in Gigabytes (GB) or Megabytes (MB) for older models.

e.g. 4GB

Please enter the default storage space for the mobile device: 5{device_model).
This should be the default storage space, without any additional storage like SD cards, with a range from the smallest available for that model to the
largest, either in Gigabytes (GB) or Megabytes (MB) for older models.
If the device only comes with one value please enter that value.

Storage space (range) e.g. 16GB - 64GB
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Please enter the processor speed for the mobile device: ${device_model).
This is sometimes labelled as CPU or CPU speed, this should be specified in (gigaHeriz) GHz.

Processor speed (CPU) £.Q.2.39 GHz

Please enter the diagonal screen size for the mobile device: ${device _model}.
This should NOT the dimensions of the phone, but the screen size. Either inches or centimetres is fine.

Screen size (diagonal) e.q. 58 inches

Please enter the quality of the main camera for the mobile device: ${device_model}.
This should be in Megapixels (MP). If the main camera is not clear provide the camera with the largest Megapixel value.
Camera quality (Main camera) eg 12 MP

Please provide some details for where you got this information.

If you found this information on a website please provide the URL for the website, if it was multiple sites please provide all the URLS.

If the information came from somewhere else please provide a brief description of where it came from.

Information source e.g. https:/fwww.apple.com/ukiiphone/

Thank you for completing this task, you help is much appreciated!
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