
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The influence of device characteristics on data collection using a 
Mobile App. 

Brendan Read 

University of Essex 

 

Understanding Society 

Working Paper Series 

No. 2019-01 

January 2019 

 



 

 

Non-technical summary 

Previous research has found differences in outcomes between surveys completed 

on mobile devices and PCs. This research considers the effect of the large number 

of different mobile devices that people use to respond to surveys. Not much it known 

about how the different specifications of these devices might affect the quality of data 

collected using them. 

The data used is from the Understanding Society Spending Study One, this was an 

app-based study asking respondents to take pictures of receipts or submit 

information about purchases using their mobile devices. Respondents to the 

Understanding Society Innovation Panel were invited to take part in the Spending 

Study between waves nine and ten of the Innovation Panel. The make, model and 

operating system of the mobile devices used were captured using the Spending 

Study app. Additional data on device characteristics was collected using Amazon 

mTurk and web scraping including: Random-Access Memory (RAM), camera quality 

and processor performance. 

Several survey outcomes were looked at, including: the length of time it took to use 

the app, the quality of images of receipts, whether data was submitted as a picture of 

a receipt or input manually, how many shopping items were on the image of the 

receipt. 

It was found that the device used can have a large effect on certain survey 

outcomes. This was most noticeable for the quality of the photographs of receipts. 

Additionally, certain characteristics of mobile devices were found to matter more than 

others in their effect on survey outcomes. For example, whether a mobile device was 

a tablet or smartphone, whether it was an Apple or Android device, and how much 

RAM the device had all affected more than one survey outcome. Finally, some of the 

results that were found seem to be because of different respondents selecting 

different mobile devices, rather than the effect of the devices themselves.
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Previous research has found differences in survey outcomes on mobile devices and 

PCs. A wide variety of mobiles devices are used to respond to surveys. Little is 

known about how differences in mobile devices may affect data quality. Data is from 
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1 Introduction 

Data collection using mobile devices, whilst offering many new opportunities for 

innovations in survey methodology, presents its own challenges. One challenge is 

how to address the diverse range of available makes and models that make up the 

mobile device market. There were an estimated 1,600 models of mobile device 

available on the market in 2009 (Zahariev et al. 2009 cited in Callegaro 2010). The 

number of Android models, the most diverse mobile operating system by number of 

model types, was reportedly around 24,000 in 2015 (Open Signal 2015).  

Such diversity raises questions as to the extent to which the use of different devices 

influences the data collection process and whether we should be concerned by this 

influence. These questions are concerning because diversity in the device used 

comes as a challenge to one of the central tenets of survey design, standardisation. 

If differences in device result in differences in the survey experience, or in the 

responses collected, it becomes important to either mitigate those biases, or to be 

able to correct for them. 

When exploring the effect of device differences there are a range of different 

outcomes that can be examined. One set of outcomes is indicators of the response 

behaviour of those completing the survey, such as response time durations. A 

second set of outcomes is data quality indicators such as missing data, or lower 

quality responses. 

It seems likely that differences may be accentuated when data collection makes use 

of hardware capabilities of devices to collect data besides those collected in a 

traditional survey. As more features of the device are drawn upon it seems probable 

that differences in device specifications will have a greater impact. Take for example 

asking respondents to use the cameras on their mobile device to take pictures for 

data collection, as was the case in the data collection task examined in this research. 

Here we might expect that the quality of the camera will affect the data that is 

collected. However, we might also find that the processor speed and available 

memory of the device may have an impact on how quickly the respondent can 

complete the task, or if they can complete the task at all. 
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Another question that remains unanswered is whether observed differences in 

outcomes are the result of device characteristics or whether they result from different 

types of people selecting different types of device. This would mean the selection 

mechanism through which individuals choose their devices would also account for 

the observed differences in outcomes. It is therefore necessary to model both device 

characteristics and respondent characteristics to fully understand the influence of 

device upon data collection outcomes. 

To examine the influence of device characteristics on data collection using a mobile 

app this paper uses data from the Understanding Society Spending Study. The 

Spending Study tasked respondents with using a mobile app to record their 

expenditure across a month. Respondents could take a picture of a receipt, manually 

enter some data about a purchase, or report no spending on a given day. Spending 

Study data is supplemented with data from wave nine of the Understanding Society 

Innovation Panel and additional data collected on characteristics of the devices used 

to participate in the Spending Study. These data are used to examine the following 

research questions: 

RQ1: What proportion of the variance in data quality indicators can be attributed to 

the device model used to participate, and what proportion to the respondent? 

RQ2: Are specific device characteristics associated with data quality indicators? 

RQ3: Do any associations between device characteristics and data quality indicators 

remain after controlling for respondent characteristics?  

2 Background 

To date, there are no papers that have explicitly examined the model of mobile 

device used in a survey. Most of the existing literature on device effects has been 

framed within the mode effects paradigm. One of the drawbacks of this is that it only 

allows analysis of differences between broad categorisations such as comparing 

between smartphones, tablets and desktops. To extend upon this and to examine 

device effects in more detail it is useful to consider device effects as a parallel to 

interviewer effects. One reason this is useful is that if we consider how the role of the 

device is like that of an interviewer in a face-to-face survey then it is possible to draw 
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on the extensive interviewer effects literature to establish a conceptual 

understanding of how and why device effects may occur. In addition, the similar 

hierarchical structure of survey responses clustered in either devices or interviewers 

mean that establishing the parallels between the two can help shape the appropriate 

methodology for studying device effects. 

2.1 Mode effects paradigm 

The potential effects of the mode used to administer a survey has long been 

recognised (Deming 1944) and substantial evidence in support of mode effects has 

been found (e.g. Groves and Kahn 1979, Dillman and Christian 2005, Elliott, 

Zaslavsky et al. 2009). For a comprehensive discussion of the effects of the mode of 

data collection the reader is directed to Jäckle, Roberts et al. (2010).  In short, the 

main concern has been the degree to which different modes used to administer 

surveys contribute to different sources of error, whether the resulting data from 

different modes are then comparable. With the rise in the number of web 

administered surveys, research has been conducted to examine the potential for 

mode effects in web administered surveys, comparing them to face-to-face and 

telephone surveys (e.g. McCabe, Boyd et al. 2002, Link and Mokdad 2005, Shin, 

Johnson et al. 2012). 

Much of the research into device effects has followed in the tradition of the mode 

effects literature. Research into device effects has typically made comparisons 

between surveys completed using a PC (defined as a desktop or laptop computer) 

and those completed using mobile devices (defined as a mobile phone or tablet) 

(e.g. De Bruijne and Wijnant 2013, Fernee and Sonck 2013, Mavletova 2013, De 

Bruijne and Wijnant 2014, Lugtig and Toepoel 2015, Struminskaya, Weyandt et al. 

2015, Revilla, Toninelli et al. 2016, Couper and Peterson 2017, Keusch and Yan 

2017, Revilla 2017, Revilla and Couper 2018). It should be noted that many of these 

examples do not refer to PC and mobile survey completion as separate modes; 

instead, both PC and mobile survey completion are considered as sub-types of the 

web mode.  

Evidence of a number of differences in surveys completion between PCs and mobile 

devices has been found.  Revilla, Toninelli et al. (2016) found that smartphone 
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respondents typically provided longer answers to open-ended questions than those 

using PCs. This finding was replicated by Antoun, Couper et al. (2017). 

Couper and Peterson (2017) found that respondents typically took longer to answer 

questions on mobile devices, and that much of this could be attributed to increased 

time spent scrolling. Several other studies have also found evidence that 

respondents take longer to complete surveys when using a mobile device (De 

Bruijne and Wijnant 2013, Mavletova 2013, Mavletova and Couper 2013, Cook 2014, 

Wells, Bailey et al. 2014, Struminskaya, Weyandt et al. 2015). However, some 

research has found no differences in the average response times between mobile 

and desktop respondents (Toepoel and Lugtig 2014, Lugtig and Toepoel 2015). 

Another finding is that respondents using mobile devices are less likely to straightline 

than those using a PC (Lugtig and Toepoel 2015, Keusch and Yan 2017). However, 

conflicting evidence that mobile respondents may in fact be more likely to straightline 

has also been found (Struminskaya, Weyandt et al. 2015), and it has been 

suggested that this may be dependent on whether the questions are presented in a 

grid . 

Research into device effects for several other forms of measurement error have 

found no evidence of such effects, including: disclosure of sensitive information 

(Mavletova 2013, Revilla, Toninelli et al. 2016, Antoun, Couper et al. 2017); 

acquiescence (Keusch and Yan 2017); mid-point responding (Keusch and Yan 

2017); item nonresponse (Lugtig and Toepoel 2015, Revilla and Couper 2018); and 

primacy effects (Mavletova 2013, Lugtig and Toepoel 2015). 

2.2 Interviewer effects conceptually 

Considering device effects in the same fashion as mode effects is useful for 

establishing differences in broad categorisations such as PCs compared to mobile 

devices. However, to gain a more granular understanding of device effects, in 

particular, the clustering effect of a specific model of device, it becomes necessary to 

turn to a different body of literature to inform our thinking. In this instance, the device 

effect can be seen to be similar to interviewer effects.  To draw this parallel the 

survey must be seen conceptually as an interaction between the respondent and an 

agent of the researcher, but instead of the interviewer, the agent is the respondent’s 
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own device. The device takes the place of the interviewer in a face-to-face interview. 

One key difference (that is returned to in the section on respondent characteristics in 

the measures section below) is that the respondents have themselves selected 

which device they are using.  

From a conceptual standpoint it is therefore useful to consider the framework of 

interviewer effects outlined by Sudman and Bradburn (1974) which suggests three 

ways in which the interviewer may bias responses. The first of these they term 

interviewer role demands. This refers to the degree of autonomy given to 

interviewers when the researcher specifies how they should go about conducting the 

interviews. They suggest this is a continuum, with a highly standardised approach 

with zero deviation from the interview script allowed at one end. At the other end of 

the continuum interviewers are asked to adopt an approach where they are 

encouraged to adapt their behaviour to best allow them to complete an interview with 

a given respondent.  

In terms of web surveys, the parallel to this would be the degree to which the 

functionality of the survey website or app is explicitly defined. When designing the 

survey task, the researcher can choose the degree to which they are explicit in 

outlining the processes the device goes through as the respondent completes the 

task. Some, or all, of the background tasks that the device performs may rely on 

defaults or logic that are provided by the device.  

To illustrate this, consider the example of collecting survey data in the form of 

photographs, taken by respondents using the camera on their mobile device. The 

researcher, at the design stage, can choose to explicitly make choices such as 

where on the device the image is stored, the quality of the image that is taken, or 

whether to use a standardised protocol for transmission of that photograph. Instead 

of explicitly defining each of these choices, the researcher may instead decide to 

allow the device to make these choices, either based on defaults set by the device 

manufacturer, or through logic defined in the software libraries on top of which the 

app is designed. These decisions, and the differences that they make across 

different devices may be one source of device effects.  
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The second source of bias outlined by Sudman and Bradburn is interviewer role 

behaviour. This refers to the degree to which the interviewer carries out the role 

demands. Even in the case of the highly standardised interview protocol, an 

interviewer may deviate from the specification. This is perhaps the source of bias 

where the parallel for device effects is easiest to consider. In terms of device effects, 

the direct comparison would be where some characteristic of a specific device 

means that the survey task does not function in the way it was programmed.  

By way of illustration consider the example of a mobile device with a lower 

specification of Random-Access Memory (RAM) that may run out of available 

memory whilst completing some portion of the survey process. If this were to 

happen, this may result in the survey app crashing, meaning the data collecting 

process is halted. Deviations such as this represent a second potential source of 

device effects. 

The final source of bias outlined by Sudman and Bradburn are the extra-role 

characteristics of the interviewer. These are those characteristics that the interviewer 

possesses which are separate from their role as an interviewer that nevertheless 

may affect the interviewer-respondent relationship, particularly through the 

respondent’s perception of the interviewer. Race, social class, educational level, 

age, and religious, ethnic, political, or other affiliations are offered as examples of 

such characteristics.  

In terms of device effects, the direct comparison would be the indirect effect of 

device features upon data collection. This would most likely occur as a result of the 

respondent’s pre-existing relationship with, and perception of, their mobile device. If, 

for example, a respondent finds it easy to take a picture using their mobile device 

they may be more motivated to do so, than a respondent who finds this hard to do. 

Ultimately, just as in the case of the extra-role characteristics of interviewers, the 

potential for bias only occurs during the interaction with the respondent. It is not the 

device or the interviewer who is the sole cause of the bias, but the respondent’s 

reaction to the device or interviewer. Such effects of the respondent’s attitude 

towards their device therefore makes up a third class of potential device effects.  
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2.3 Interviewer effects methodology 

As well as informing how to conceptually consider device effects, the comparison to 

interviewer effects can help to inform how to study device effects. The use of 

multilevel models to account for the clustering effect of respondents within 

interviewers has long been established (Wiggins, Longford et al. 1990, Pickery, 

Loosveldt et al. 2001, West and Olson 2010, Jäckle, Lynn et al. 2011, West and 

Elliott 2014, West, Conrad et al. 2018). In addition to the second-level of analysis to 

model the clustering effect of interviewers, some research has included a third level, 

measuring the clustering effect of the area a respondent lives in (Schnell and Kreuter 

2005). Attempts have been made to disentangle interviewer effects from area effects 

by fitting cross-classified models with interviewer and area as higher levels that are 

not hierarchically nested (O’Muircheartaigh and Campanelli 1998, O'Muircheartaigh 

and Campanelli 1999, Durrant, Groves et al. 2010, Brunton-Smith, Sturgis et al. 

2017).   

Most of these studies have used some variation of intra-interviewer correlations (IIC), 

or interviewer design effects, to assess the clustering effect of interviewers. These 

measures are related to one another and are derived from the decomposition of 

variance in the multilevel models. The size of reported intra-interviewer correlations 

has been quite varied. O’Muircheartaigh and Campanelli (1998) suggest that 

correlations of larger than 0.10 are rare. In their research they found correlations 

ranging from 0.06 – 0.17. Jäckle, Lynn et al. (2011) reported IICs ranging from 0.04 

– 0.07. West and Olson (2010) cite a wider range of observed IICs ranging from 0.01 

– 0.12. It has been suggested that even relatively small interviewer clustering effects 

can have large impacts when estimating statistics. In both cases, assuming an 

average of 30 respondents per interviewer, an IIC of 0.01 would result in a twenty-

nine percent increase (West and Olson 2010), and an IIC of 0.02 would result in a 

fifty-four percent increase (West, Conrad et al. 2018) in the variance of an estimated 

mean. 

Struminskaya, Weyandt et al. (2015) have used multilevel models to examine device 

effects when comparing surveys responses completed on PCs, tablet and 

smartphones. However, the multilevel models they fitted did not include the device 

model as a level in the model. Instead repeated measures were the lowest level in 
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their models, clustered within individual respondents. They reported intra-respondent 

correlations ranging from 0.16 to 0.62. 

3 Data 

3.1 Study designs 

Three datasets are used for the analyses in this research. The main data set used is 

the Understanding Society Spending Study, this was supplemented with data from 

the Understanding Society Innovation Panel and some additional data collection 

capturing characteristics of the devices that were used by respondents in the 

Spending Study. Details of all three data sets can be found below. 

3.1.1 Innovation Panel 

The Understanding Society Innovation Panel (University of Essex. Institute for Social 

and Economic Research 2018) is the experimental and methodological research 

portion of the UK Household Longitudinal Study. The Innovation Panel is an annual 

household panel survey with a stratified and clustered sample that is representative 

of the Great British population south of the Caledonian Canal. Data from the ninth 

wave of the study are used as covariates in the analyses presented in this research. 

The wave nine (IP9) sample consists of remaining sample members from the original 

sample along with respondents from two additional refreshment samples who have 

participated from waves four and seven onwards. All household members aged 

sixteen and over at the time of interviewing are considered eligible for annual 

interviews. The ninth wave had a household response rate of 84.7% and an 

individual response rate of 85.4% within responding households (Jäckle, Al Baghal 

et al. 2018). 

3.1.2 Spending Study One 

The Understanding Society Spending Study One (University of Essex. Institute for 

Social and Economic Research 2018) was an inter-wave data collection task that 

collected additional information about the expenditure of Innovation Panel members. 

The first Spending Study took place between waves nine and ten of the Innovation 

Panel. Data collection used an app that asked respondents in the study to use their 

mobile devices (smartphones or tablets) to submit information on their purchases as 



9 

 

they made them. This app was developed by Kantar Worldpanel, with whom the 

study was conducted in partnership.  

Respondents were asked to submit data about their purchasing behaviour in one of 

three forms: scanned pictures of receipts, taken using the mobile devices camera; 

self-reports of purchases, including details of what category of item the purchases 

were and for how much; or reports of days without spending. More details can be 

found in the Spending Study One user guide(Jäckle, Burton et al. 2018). Three sets 

of additional questionnaires were asked of respondents: a registration questionnaire 

at the start of the study; a series of end of week questionnaires throughout their time 

in the study; and an end of project questionnaire after they had finished participating. 

All adult members (aged 16 and over) of households where at least one person 

responded at IP9 were included in the issued sample for Spending Study One; 

except those known to have refused to take part in the Innovation Panel long-term. 

Incentives were given to respondents in the form of Love2Shop gift vouchers or gift 

cards. The amount respondents received varied depending on their level of 

participation in the study. An initial incentive was offered for completing the 

registration survey and downloading the app, this had two experimental conditions, 

£2.00 and £6.00. Allocation to the incentive treatments was made at the household 

level. An additional £5.00 incentive was offered to a random subsample of all 

members of half of all households where nobody had participated by the third week 

of the study. Respondents received an incentive of 50p for every day they used the 

app. Completion of each end of week survey earned respondents an additional 50p 

and completion of the end of project survey earned £3.00. To maximise compliance 

with the task across the month, an additional incentive of £10.00 for using the app for 

31 consecutive days was offered. When this additional incentive was administered, 

this criterion was relaxed to participation on 27 out of 31 days. 

There were 274 people who used the Spending Study app at least once. This 

constitutes a response rate of 11.5% amongst the 2,383 Innovation Panel members 

who were invited to participate. For the purposes of the analyses presented here, 

this sample was constrained to the 255 respondents for whom IP9 data on all the 

respondent characteristics used as predictors was available. Those models not 

including the respondent characteristics were also fitted using all 274 respondents; 
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there was little to no difference in the results, so only results from the constrained 

sample are presented here. 

3.1.3 Device characteristics data 

The make and model of the device used to complete each app use was captured 

within the main Spending Study One app. There were 97 different makes and model 

of device amongst all 274 Spending Study respondents, and 90 makes and models 

used by the analytical sample of 255 respondents. The Spending Study app also 

captured the Operating System (OS).  Whether the device was a tablet or 

smartphone was then derived during the data cleaning process for the Spending 

Study. 

Additional data collection then took place to capture specific characteristics of each 

of these mobile devices. This data collection task was completed using the Amazon 

Mechanical Turk (mTurk) micro-task crowdsourcing platform. The mTurk platform 

allows the creation of so-called Human Intelligence Tasks (HITs), which harness the 

labour supplied by the platform’s workers to complete them.  There has been 

growing interest in using Amazon mTurk for social science data collection (e.g. 

Paolacci, Chandler et al. 2010, Buhrmester, Kwang et al. 2011, Berinsky, Huber et 

al. 2012, Mason and Suri 2012). This has also extended to using mTurk for survey 

methodology data collection (Antoun, Zhang et al. 2016, Keusch and Yan 2017). 

Screenshots of the HIT used to collect the additional device characteristics can be 

found in Appendix A. Workers were presented with the make and model of a given 

device1, and asked to provide values for a series of device characteristics.  Workers 

were paid $0.25 for each HIT they completed. Five device characteristics were 

collected using the HIT: the device’s Random-Access Memory (RAM) (measured in 

gibibytes or mebibytes), processor speed (measured in hertz), camera quality 

(measured in megapixels), storage space (in gigabytes or megabytes) and screen 

size (measured diagonally in inches). Some cleaning was needed to extract the 

                                            

1
 The device names captured for iOS devices were the internal machine identifiers used by Apple, 

these correspond to the more commonly known product names, for example iPhone7,2 : iPhone 6. 

These were converted before the HIT was posted to make identification by mTurk workers easier. 
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numerical value, and units from the text input by the workers when completing the 

HITs. However, this was relatively straightforward to complete using Boolean string 

matching, or regular expressions. Of these five measures, only the device’s RAM 

and camera quality were ultimately included as measures in the models presented 

here.  

Screen size was not included, as there was limited variation of screen sizes amongst 

tablets, or amongst smartphones. The device type was the more important 

distinction, as opposed to the size of the screen, including this as a continuous 

measure resulted at times in an apparent linear effect, when in fact the important 

relationship was whether a device was a smartphone or tablet. 

The storage space variable that was captured was ultimately excluded from analysis 

as this was a very imprecise measure. The challenge when capturing storage space 

is that the same model of device might be available in variants with different default 

storage capacity; for example, the Apple iPhone 6 is available in 16/32/64/128 GB 

versions. Whilst it was possible to capture the full range of available storage 

capacities using mTurk, it was not possible to determine exactly which variant the 

devices used in the Spending Study were, or whether two devices that were the 

same model had different storage capacities. This issue was further compounded by 

the fact that some devices allow the use of additional memory cards to provide extra 

storage. Finally, even if the full storage capacity of the device could be identified, it is 

the amount of available storage on the device that would actually affect performance. 

The processor speed measure captured was problematic because a number of 

newer mobile devices use multiple cores in their CPUs. Therefore, a large number of 

the reported processor speeds only captured the performance of one core, not the 

total performance of the processor. Consequently, an alternative source of data for 

the performance of device processors was used, details of this can be found in the 

measures section below.  

3.2 Multi-level structure 

Throughout the analyses in this research the data are considered to have a four-

level cross-classified structure. This structure is illustrated in the classification 

diagram in Figure 1. 
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Figure 1. Classification diagram for the four-level cross-classified data structure. 

 

The lowest level considered is the individual app uses. Each individual app use is 

then nested within two second-level clusters. The first of these is the specific model 

of device that was used to complete the app use. For example, all app uses 

completed on Apple iPhone 6s would be in the same cluster.  The second is the 

respondent who completed that app use. Finally, the Primary Sampling Unit (PSU) to 

which the respondent belongs is also included to account for the complex clustered 

sample design of the Innovation Panel. There are no variables measured at the PSU 

level included in the analyses. Variables measured at all three of the other levels are 

included. Household was also considered as an additional level, but models fitted to 

include households suggest there was little clustering effects of households, and 

therefore the more parsimonious four-level structure is presented here. 

4 Measures 

4.1 Data quality indicators - App use level 

Ultimately, what is f interest in this research is the contribution of systematic error or 

biases that the device used produces in estimates generated from the data collected. 

Without validation of the true measure (in this instance a total record of true 

expenditure across the duration of the study) it is necessary to consider the 

contribution to error indirectly. As the error itself is unobservable it is instead useful 

to examine the effect of device upon observable measures that are assumed to be 

correlated with the degree of error in estimates produced using the data. Four data 
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quality indicators have been identified and are outlined below. Descriptive statistics 

for all four measures can be found in Table 1. 

 

Table 1. Descriptive statistics of app use outcomes. 

App use duration (seconds)  
(n=10621) 

Mean 31 

SD 26 

Min 3 

Median 24 

Max 172 

   
Suspected outlier in terms of  
app use duration 
(n=10985) 

Yes 3% 

No 97% 

   
Type of app use 
(n=10985) 

Receipt scanned 48% 

Purchase without receipt 30% 

Report of nothing bought 22% 

   

Was the receipt fully readable Yes 92% 

(n=5263) No 8% 

   
Number of items on the receipt 
(n=4790) 

Mean 7 

SD 10 

Min 1 

Median 3 

Max 129 

 

4.1.1 App use duration  

Response times have previously been examined as a data quality indicator 

(Malhotra 2008, Yan and Tourangeau 2008, Galesic and Bosnjak 2009). Typically, 

this has involved the assumption that shorter response times are more likely to be 

indicative of satisficing, and as a result associated with increased errors. However, 

as is noted by Malhotra, the relationship between response time and data quality is 

not easily disentangled. For example, when considering the effect of the device used 

on app use duration it does not make sense to suggest that faster devices result in 

lower quality data. In contrast, it seems likely that the opposite may be true, that 
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slower devices may in fact result in poorer quality data. The justification for this is 

that slower devices may contribute to an increased perception of the time it takes to 

participate. The negative impact of longer perceptions of time taken to complete a 

survey on response propensity is well documented (Collins, Sykes et al. 1988, 

Yammarino, Skinner et al. 1991, Dillman, Sinclair et al. 1993, Groves, Singer et al. 

1999, Crawford, Couper et al. 2001, Galesic and Bosnjak 2009, Roberts, Eva et al. 

2010). Considering this in the context of the Spending Study, if a device results in 

app uses taking on average longer, the assumption is that this means that it is less 

likely the respondent using that device will report all their purchases. 

The duration of app uses was measured in seconds. A number of extreme 

responses were observed, and the possibility that these may be outlying responses 

was considered. Using the same method as in Read (2018) an adjusted boxplot was 

used to classify outliers. This method takes into account the skewness of the 

distribution by using the medcouple (Brys, Hubert et al. 2004), a robust measure of 

the skewness of the data. This is applied to a boxplot as suggested by Hubert and 

Vandervieren (2008) by to adjust the interval of the boxplot to take into account the 

skewness of the data. All data points outside the adjusted interval are then coded as 

outliers. These outliers are excluded for those models in this research that regress 

app use duration on predictors. Separate models are then fitted to examine the 

associations between different predictors and the probability of an app use being an 

outlier in terms of duration. The mean app use duration was 31 seconds and the 

percentage of app uses with outlying durations was 3.39 percent.  

4.1.2 Type of app use  

A second data quality indicator is the type of app use. The three app use types were: 

taking a picture of a receipt, manually entering data about a purchase, or reporting 

nothing bought that day.  Here, the assumption is that app uses that are reports of 

purchases made without receipts, or of nothing bought, may be more likely to 

represent increased error if the “true” response should have been a scanned receipt. 

One potential issue is that of course both of these categories of app uses can be 

valid responses and may not represent an increase in error. Therefore, a higher 

proportion of these types of app use clustered within a given respondent may 

represent a true difference in purchasing behaviour. In contrast, there is no reason to 
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believe that the device should have a direct effect on the type of app use, therefore 

any observed effect would suggest a bias towards a certain type of app use. This 

measure is included as a binary indicator of whether the app use was a scanned 

receipt, (a value of 0) or one of the other two types of app use (assigned a value of 

1). Forty-eight percent of app uses were scanned receipts, and fifty-two percent of 

app uses were either purchases without receipts, or reports of nothing bought. 

4.1.3 Image quality 

 A third data quality indicator analysed is the quality of the images produced by 

respondents when scanning their receipts. Here the data quality assumption is more 

easily understood, namely that poorer quality images increase the potential for error, 

either because information cannot be collected from them, or because the 

information collected may be incorrect.  This measure is a binary indicator with fully 

readable receipts being coded as zero. Receipts which could not be fully read, either 

because part of the receipt was unreadable, the whole receipt was unreadable, or 

there was not an image captured, were coded as one. Ninety-two percent of receipts 

were fully readable, and eight percent were either partially readable, unreadable, or 

missing. For both this measure, and the number of items on receipts (below), the 

number of respondents and devices is slightly reduced as some respondents never 

submitted a scanned receipt. The number of respondents and devices for these 

measures is reported in Table 4 in the Results section. 

4.1.4 Number of items on the receipt 

 The final data quality indicator is the number of items that were on the receipt. Once 

again, this is a variable that might reasonably be expected to vary as a direct effect 

of respondent characteristics, as different purchasing behaviour will affect the 

composition of receipts. However, as is the case with the other data quality 

indicators, there is no reason to suspect that the characteristics of the device used 

should have a direct effect on the number of items on a receipt. Therefore, the 

assumption here is that shorter receipts as a result of device characteristics may 

represent a downwards bias caused by the device used. The mean number of items 

on receipts was 7. 
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4.2 Device Characteristics – Device level 

4.2.1 Operating System (OS) 

 The first of five device characteristics that was identified as possibly affecting data 

quality in the context of the Spending Study was the Operating System (OS). 

Descriptive statistics for all five device characteristics are in Table 2. The app was 

available for iOS and Android, and which OS the respective device was using was 

captured within the app itself. Differences in the software architecture of the two 

operating systems were the main reason that it was believed that the OS of the 

device used may affect data quality. For example, iOS and Android differ in how they 

handle memory allocation, which can have a significant effect on both app speed 

and processing performance (Rinaldi 2017, Lee 2018, Brownlee 2019). There are 

also differences in the demographics of iOS and Android users, with men being 

found to be slightly more likely to be iOS users than women (Fluent 2016). Amongst 

the device models used in the Spending Study, 29% were iOS devices and 71% 

were Android devices.Mobile device type 

The second device characteristic considered was the type of mobile device used, 

meaning whether the device was a smartphone or a tablet. Existing research has 

found differences between smartphone and tablet responses in surveys; it has been 

suggested that responses to surveys using tablets are at times more similar to PC 

responses than smartphone responses (Struminskaya, Weyandt et al. 2015). The 

type of mobile device used to complete the app uses was captured within the app. 

In terms of the Spending Study, the difference in size between tablets and 

smartphones was considered relevant for two reasons. The first of these is that the 

increased size of tablets may potentially make it more difficult to take photographs, 

as they are potentially bulkier and more cumbersome for respondents to use to take 

the photograph. However, the increased screen size may also have made it easier to 

see the photograph as it was being taken, potentially resulting in higher quality 

images. As was noted above, screen size itself was considered as a variable for the 

models estimated in this paper, however there was little variation in screen size 

within tablets, or within smartphones. Twenty-two percent of devices were tablets, 

and seventy-eight percent of devices were smartphones. 
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Table 2. Descriptive statistics for the five device characteristics. 

 
 

Device 
models 
(n= 90) 

Operating system Apple 29% 

Android 71% 

   
Device Type Smartphone 78% 

Tablet 22% 

   
RAM (Gibibytes) Mean 1.79 

SD 0.99 

Min 0.50 

Median 1.50 

Max 4.00 

   
Camera quality (Megapixels) Mean 9.57 

SD 5.01 

Min 0.70 

Median 8.00 

Max 20.70 

   
Processor performance score Mean 2.13 

SD 1.54 

Min 0.21 

Median 1.63 

Max 8.98 

 

 

 

4.2.3 Camera quality   

The third device characteristic used as predictor of data quality was the quality of the 

main camera on the mobile device, measured in megapixels. This was coded in the 

mTurk data collection. Each device was coded by three different workers, and then 
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methodology created for assessing inter-coder reliability was adopted to assess the 

consensus of the three coders. For 80% of devices the three workers were in perfect 

agreement as to the value of the quality of the camera. The corresponding kappa 

statistic of κ = 0.83 was above the 0.80 threshold describe as “almost perfect” 

agreement (Landis and Koch 1977). Similarly, the value for Krippendorff’s alpha was 

above the recommended 0.80 threshold (Krippendorff 2004) at α = 0.84. For each 

device the modal camera quality value for the three coders was selected.2 The mean 

camera quality of devices was 9.57 megapixels. 

4.2.4 Random-Access Memory (RAM) 

The fourth device characteristic was the amount of Random-Access Memory (RAM) 

available on the device. This is the amount of available immediate storage for 

software that is running. This was coded in the mTurk data collection.  This was 

measured in gibibytes.3 For the RAM measure all three coders were in perfect 

agreement 96% of the time and both the kappa statistic of κ = 0.98, and 

Krippendorff’s alpha atα = 0.95 suggest there was a high level of agreement 

amongst coders. Again, for each device the modal RAM value for the three coders 

was selected.4 The mean RAM of devices was 1.79 GiB. The available RAM on 

                                            

2
 For two models of device all three coders were in disagreement about the camera quality value, in 

these cases the value was manually obtained from the manufacturer’s website: Samsung SM-T210 - 

http://www.samsung.com/latin_en/consumer/mobile-devices/tablets/galaxy-tab/SM-T2100ZWATPA; 

Samsung SM-T530" - http://www.samsung.com/uk/tablets/galaxy-tab-4-10-1-t530/SM-

T530NYKABTU.  

3
 In both the discussion of the HIT, and in much general discussion of RAM the unit measured is 

typically referred to as gigabytes, however as RAM is measured in multiples of bytes, which is a 

binary measure, the more technically correct term gibibytes (GiB) is used throughout International 

Electrotechnical Commission (1999). IEC 60027-2 Amendment 2: Letter symbols to be used in 

electrical technology - Part 2: Telecommunications and electronics. 

  

4
 For one model of device all three coders were in disagreement about the RAM value, therefore the 

value was manually obtained from the manufacturer’s website: LGE LG-D855 - 

http://www.lg.com/uk/mobile-phones/lg-D855. 

http://www.samsung.com/latin_en/consumer/mobile-devices/tablets/galaxy-tab/SM-T2100ZWATPA
http://www.samsung.com/uk/tablets/galaxy-tab-4-10-1-t530/SM-T530NYKABTU
http://www.samsung.com/uk/tablets/galaxy-tab-4-10-1-t530/SM-T530NYKABTU
http://www.lg.com/uk/mobile-phones/lg-D855
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mobile devices only comes in a select number of values, measured in half or whole 

gibibyte increments. As a result, alternative specifications of models fitting RAM as a 

series of categorical variables was considered. These ordinal models produced met 

the proportional odds assumption, and as RAM is technically a continuous measure 

the continuous variants of the models are reported. 

4.2.5 Processor performance  

 As was mentioned earlier, the processor performance measure captured in the 

mTurk data collection did not account for newer mobile devices having multiple 

cores, therefore it was necessary to obtain an alternative measure of this variable. 

This was scraped from the Geekbench (2018) database of comparative processor 

performance scores using an R script. Geekbench provide industry leading 

benchmarks of processor scores where Intel Core i7-6600U processor is used as the 

baseline with a score of 4,000 points. Geekbench’s database contains multiple 

records for a given device; the median value for a given device was selected. Double 

the score represents double the processing performance.  The large range of the 

original measure meant that interpretation of coefficients was difficult, as a one-unit 

change in processing performance did not really reflect the wide range of scores. 

Therefore, the decision was made to divide all the processor scores by one thousand 

to make interpretation easier. The mean processor performance score was 2.13.   

4.3 Respondent Characteristics – Respondent level 

One of the challenges in examining device effects is disentangling the direct effect of 

device characteristics from the indirect effects of respondent characteristics as a 

result of selection. Lugtig and Toepoel (2015) suggest that selection effects 

accounted for the majority of the observed device effects in their study. It should be 

noted however, that this finding was based on respondents who had completed 

successive waves of a survey on different types of device. It is less clear whether 

this absence of direct device effects might also be observed when respondents are 

required to complete a study using a mobile device (without a desktop alternative).  

As was noted earlier, the device the respondent uses to complete a survey task is 

not random, and therefore device characteristics are not independent of respondent 

characteristics. As a result, the potential exists for any observed direct effects of 
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device characteristics to in fact be indirect effects of respondent characteristics, if 

those respondent characteristics are not adequately controlled for when modelling. 

Five respondent characteristics have been included in the models presented later in 

this paper. These have been selected based on a combination of: existing literature 

that suggests they may be related to device selection and established respondent 

characteristic controls in a previous paper on device effects by Struminskaya, 

Weyandt et al. (2015). All five characteristics are taken from the ninth wave of the 

Innovation Panel. Descriptive statistics for the respondent characteristics can be 

found in Table 3. 

Table 3. Descriptive statistics for respondent characteristics. 

 
 

Respondents 
(n= 255) 

Sex Male 39% 
Female 61% 

   
Age (years) Mean 43 

SD 15 
Min 16 
Median 42 
Max 86 

   
Equivalised gross monthly 
household income (£) 

Mean £2344 
SD £1242 
Min £116 
Median £2146 
Max £7921 

   
Employment status 
 
 
 

Management 36% 
Intermediate 15% 
Routine 18% 
Unemployed 4% 
Retired 15% 
Inactive 11% 

   
Highest level of education Degree or higher 55% 
 Lower than a degree 45% 

4.3.1 Sex 

The first of these respondent characteristics was the respondent’s sex. This has 

previously been found to be related to device selection (Karjaluoto, Karvonen et al. 

2005). Sex was also one of the respondent characteristics controlled for by 

Struminskaya, Weyandt et al. (2015). Male respondents were coded as zero and 
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female respondents were coded as one. Amongst the analytical sample 39% of 

respondents were male, and 61% percent of respondents were female. 

4.3.2 Age 

 The second respondent characteristics was their age. Age has previously been 

found to be a predictor of a respondent’s technical ability using a mobile device 

(Loges and Jung 2001). Struminskaya, Weyandt et al. (2015) found age to be a 

significant predictor of all of the data quality indicators they examined.  This was a 

continuous variable measured in years, and the mean age of respondents in the 

Spending Study was 43. 

4.3.3 Equivalised gross monthly household income 

The respondent’s level of household income was also included as a relevant 

respondent characteristic.  No previous literature was found that provided evidence 

to suggest that level of income affects device selection. Price however has been 

found to be a factor in device selection (Sarker and Wells 2003), so it seems 

plausible that level of income would influence a respondent’s decision about how 

much they could afford to spend on a device. It also seems likely, given the subject 

of the Spending Study, that level of income may affect data quality indicators, for 

example the number of items on receipts. Gross monthly income was equivalised 

using the modified OECD scale from the ninth wave of the Innovation Panel to 

account for differences in the number of household members. The mean equivalised 

gross monthly household income was £2344. 

4.3.4 Employment status 

Social class has previously been found to be related to device selection, with 

different factors being important to white-collar and blue-collar  workers when making 

device selection decisions (Karjaluoto, Karvonen et al. 2005). Struminskaya, 

Weyandt et al. (2015) found differences in data quality indicators in a mobile survey, 

based on whether a respondent was in paid employment. Employment status was 

measured using the three category NSSEC classification, which classifies those in 

paid employment into management (36% of respondents), intermediate (15% of 

respondents) and routine (18% of respondents) plus categories for respondents who 
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were unemployed (4% of respondents), retired (15% of respondents) and inactive 

(11% of respondents). 

4.3.5 Level of education:  

The final respondent characteristic included was the level of education of 

respondents. This was also found to be a significant predictor of data quality 

indicators in a mobile survey (Struminskaya, Weyandt et al. 2015). This was 

categorised into those whose highest level of qualification obtained was a degree or 

higher (55% of respondents), and those whose highest level of qualification was less 

than a degree (45% of respondents). 

5 Results 

RQ1: What proportion of the variance in data quality indicators can be attributed to 

the device model used to participate, and what proportion to the respondent? 

To decompose the proportion of variance that can be attributed to the device used to 

participate, a series of five four-level cross-classified regression model were fitted 

using Markov chain Monte Carlo (MCMC) methods of estimation. These models 

were estimated using MLwiN (Charlton, Rasbash et al. 2017) using the software’s in-

built MCMC estimation methods (Browne 2017). All models were fitted with a 

monitoring chain of 50,000 iterations, a burn in length of 1,000 iterations and with a 

thinning factor of one. For the two continuous data quality indicators, duration and 

number of items on the receipt, the equation for the models is as follows:  

𝑦𝑖𝑗𝑘𝑙 =  𝛽0 +  𝑓0𝑙 + 𝑣0𝑘 + 𝑢0𝑗𝑙 + 𝑒𝑖𝑗𝑘𝑙 (1) 

where 𝑦𝑖𝑗𝑘𝑙 is the value of the respective data quality indicator for a given app use 𝑖 

performed by a given respondent 𝑗 using device model 𝑘 within PSU 𝑙. The 

coefficient  𝛽0 is then overall mean across all app uses, all respondents, all device 

models, and all PSUs. The random PSU effect is  𝑓0𝑙, the random device effect is  

𝑣0𝑘, the random effect of the respondent is 𝑢0𝑗𝑙 and 𝑒𝑖𝑗𝑘𝑙 is the residual difference of 

individual app uses. All four of the random terms are assumed to be normally 

distributed such that:𝑓0𝑙  ~ 𝑁(0, 𝜎2
𝑓0),  𝑣0𝑘 ~ 𝑁(0, 𝜎2

𝑣0), 𝑢0𝑗𝑙~ 𝑁(0, 𝜎2
𝑢0) and 

𝑒𝑖𝑗𝑘𝑙~ 𝑁(0, 𝜎2
𝑒). 
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For the three other data quality indicators logistic models are fitted with the 

equational form: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗𝑘𝑙) =  𝛽0 +  𝑓0𝑙 + 𝑣0𝑘 + 𝑢0𝑗𝑙 (2) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗𝑘𝑙) is the log odds of the occurrence of a value of one for the 

corresponding data quality indicator.  The random parts of the model 𝑓0𝑙 , 𝑣0𝑘 and 𝑢0𝑗𝑙 

retain their meaning from equation 1, namely that they are the cluster specific 

effects. As such, these three terms hold the same assumptions as in equation 2. 

However, the logistic function, by definition (see Snijders and Bosker 2012 for more 

details, Hox, Moerbeek et al. 2017), fixes the variance of the lowest level residuals 

𝜎2
𝑒 such that 𝜎2

𝑒 =  𝜋2 3⁄  ≈ 3.29. Results from all five models that were fitted are 

presented in Table 4. 

 

The decomposition of the amount of variance apportioned to each of the levels in the 

model can be achieved by examining the Variance Partition Coefficient (VPC), which 

is the proportion of the total variance that is explained by each of the levels. As an 

example, to calculate the VPC for PSUs the following equation is used: 

Table 4. Results of four-level cross-classified regression models of the data quality 
indicators with no predictors. 

 

Duration 
Duration 
outlier 

Other activity 
types 

Low quality 
image 

Number of 
items 

 

 VPC  VPC  VPC  VPC  VPC 

𝝈𝟐
𝒇𝟎 

PSU 
5.79 0.01 0.02 0.01 0.03 0.01 0.26 0.05 0.36 0.00 

𝝈𝟐
𝒗𝟎 

Device 
52.81 0.08 0.13 0.03 0.32 0.06 1.20 0.22 0.23 0.00 

Respondent 

𝝈𝟐
𝒖𝟎 

68.06 0.10 0.53 0.13 1.95 0.35 0.64 0.12 10.49 0.10 

𝝈𝟐
𝒆 

Residual 
564.98 0.82 3.29 0.83 3.29 0.59 3.29 0.61 96.02 0.90 

PSUs  90 90 90 89 89 

Devices 90 90 90 84 83 

Respondents  255 255 255 233 231 

App uses 10621 10985 10985 5263 4790 

DIC 97656 3086 12463 2519 35599 
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𝜎2
𝑓0

𝜎2
𝑓0 + 𝜎2

𝑣0 + 𝜎2
𝑢0 + 𝜎2

𝑒
 (3) 

The variance for each level can then be substituted into the numerator of the 

equation to calculate a level specific VPC. The VPC is similar to an intraclass 

correlation coefficient (of which intra-interviewer correlations used in the interviewer 

effects literature is an example). In many circumstances the two are analogous to 

one another.  

However, Leckie (2013) makes the distinction between the two, stating that the VPC 

reflects the proportion of the response variance  the model attributes to each level in 

the model. In contrast, the ICC measures the expected homogeneity between two of 

the lowest level units (in this case app uses), based on their membership to each of 

the higher-level units. In a hierarchically nested model, without random effects for 

predictor variables, these two measures will be the same (as is the case in much of 

the interviewer effects literature). However, in a cross-classified model, the different 

configurations of possible memberships to higher level groups means that the ICC is 

not equivalent to the VPC, and in fact there will be more possible ICCs than VPCs. 

For example, the ICC for two app uses that share a device and a respondent will be 

different than that for two app uses that are completed using the same device model, 

but by different respondents. To allow comparability to the interviewer effects 

literature, and to enable device effects to be assessed, the VPC was chosen to be 

reported throughout. 

In terms of durations of the app uses, it was expected that the level of variance that 

was attributed to the respondent would be quite a bit larger than that which is 

attributed to the device used. However, this was not the case, with the proportion of 

the variance attributed to the respondent being 10% and the proportion attributed to 

the model of the device being used being 8%. 

 The proportion of variance in whether the duration was an outlier or not was in line 

with the expected result. Namely, that a greater share (13%) of the variance was 

attributed to the respondent than to the device (3%).  
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It was expected that for the type of activity that is performed a far larger share of the 

variance would be attributed by the model to the respondent; at 35% this was the 

case. However, that 6% of the variance is attributable to the device used still 

suggests that the model of device is associated with what type of app use each app 

use is.  

The share of the variance that was attributed to the device model was highest for the 

quality of the images produced, at 23%. This compares to just 9% of the variance 

being attributable to the respondent for this indicator. This was unexpected, whilst it 

was considered that the device used may be associated with the quality of the 

images produced, it was not expected that almost a quarter of the variance in the 

measure would be attributable to the device used.   

Finally, almost none of the variance (<1%) in the number of items was attributed to 

the device used, in comparison the share of the variance attributed to the respondent 

was 10%. This was unexpected, as it was anticipated that some of the variance in 

this measure would be associated with the model of device used. However, from a 

data quality perspective this is perhaps reassuring as it suggests there are not 

device effects downwardly biasing this measure.  

RQ2: Are specific device characteristics associated with data quality indicators? 

To examine the effects of specific device characteristics the five characteristics 

measured at the device level were introduced to each of the five models. The 

resulting models are the models presented on the left-hand column under each data 

quality indicator in Table 5.  
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Table 5. Results of four-level cross-classified regression models of the five data quality indicators with device and respondent characteristics as 
predictors. 

  Duration Duration outlier† Other activity types† Low quality image† Number of items 
  Β 

 
Β 

 
OR 

 
OR 

 
OR 

 
OR 

 
OR 

 
OR 

 
Β 

 
Β 

 Android 6.09 ** 4.12 * 0.56 ** 0.54 ** 0.87  0.92  3.14 *** 2.91 ** 0.60  0.65  
 (2.06)  (1.75)  (0.24)  (0.27)  (0.22)  (0.27)  (0.34)  (0.36)  (0.73)  (0.75)  
Tablet 7.06 ** 3.47  0.84  0.72  1.11  1.19  2.25 * 2.16 * -1.50 * -1.61 * 
 (2.50)  (2.09)  (0.28)  (0.30)  (0.30)  (0.31)  (0.41)  (0.44)  (0.68)  (0.80)  
Camera quality 0.11  -0.14  1.00  1.00  1.01  0.99  1.01  1.01  0.00  0.01  
 (0.27)  (0.23)  (0.03)  (0.03)  (0.03)  (0.03)  (0.05)  (0.05)  (0.11)  (0.11)  
RAM -4.78 ** -2.70 * 1.09  1.16  1.28  1.26  0.49 ** 0.50 * -0.65  -0.48  
 (1.55)  (1.28)  (0.19)  (0.21)  (0.19)  (0.18)  (0.31)  (0.32)  (0.63)  (0.65)  
Processor  -1.01  -0.74  0.84 * 0.84  1.00  0.94  0.94  0.94  -0.34  -0.21  
 (0.71)  (0.62)  (0.10)  (0.11)  (0.08)  (0.08)  (0.13)  (0.14)  (0.27)  (0.28)  
Female   0.20    1.04    0.73 *   1.14    1.86 *** 
   (0.99)    (0.18)    (0.17)    (0.21)    (0.60)  
Age (years)   0.20 ***   1.00    0.97 ***   1.02    0.04  
   (0.05)    (0.01)    (0.01)    (0.01)    (0.03)  
Employment status  
Ref:  Management 

   
  

  
  

  
  

  
  

  

                    

Intermediate   1.49    1.09    0.64 *   0.56    0.01  
   (1.45)    (0.24)    (0.24)    (0.35)    (0.84)  
Routine   1.71    1.11    0.77    0.76    -0.56  
   (1.44)    (0.25)    (0.24)    (0.36)    (0.87)  
Unemployed    0.85    1.43    1.36    1.11    -1.96  
   (2.87)    (0.47)    (0.49)    (0.74)    (1.81)  
Retired   7.39 ***   1.85 *   1.12    0.61    -0.57  
   (2.02)    (0.32)    (0.31)    (0.46)    (1.13)  
Inactive   4.32 **   0.97    0.82    1.03    -0.60  
   (1.79)    (0.32)    (0.29)    (0.43)    (1.10)  
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Degree or higher   0.52    1.12    0.63 **   0.81    -0.11  
   (1.05)    (0.17)    (0.18)    (0.24)    (0.62)  
Income   0.00    1.00    1.00    1.00    0.00  
   (0.00)    (0.00)    (0.00)    (0.00)    (0.00)  
App use type  
Ref: Scanned receipt  

   
  

  
  

 
   

  
  

  

 

Purchase without 
receipt 

  -11.08 ***   0.65 ***             
  (0.53)    (0.13)              

 

Report of nothing 
bought 

  -33.23 ***   0.52 ***             
  (0.58)    (0.16)              

Constant 36.72 *** 36.35 *** 0.05 *** 0.06 *** 0.84  7.11 *** 0.10 *** 0.06 ** 9.08 *** 6.59 *** 
 (2.45)  (3.51)  (0.28)  (0.59)  (0.28)  (0.47)  (0.44)  (0.91)  (0.85)  (1.9)  

 
𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 𝜎 VPC 

PSU 

 𝜎2
𝑓0 

5.79 0.01 4.95 0.01 0.02 0.00 0.02 0.00 0.15 0.04 0.10 0.03 0.32 0.07 0.50 0.10 0.36 0.00 0.40 0.00 

Device  

𝜎2
𝑣0 

52.81 0.08 16.96 0.03 0.13 0.03 0.18 0.04 0.23 0.05 0.30 0.07 0.51 0.12 0.80 0.15 0.15 0.00 0.15 0.00 

Respondent  

𝜎2
𝑢0 

68.06 0.10 65.51 0.10 0.45 0.12 0.63 0.14 1.34 0.32 1.22 0.30 0.59 0.14 0.57 0.11 9.99 0.09 9.98 0.09 

Residual  

𝜎2
𝑒 

564.98 0.82 565.48 0.87 3.13 0.84 3.67 0.82 2.40 0.58 2.44 0.60 2.82 0.67 3.43 0.65 96.02 0.90 95.89 0.90 

PSUs  90 90 90 90 90 90 89 89 89 89 
Devices 90 90 90 90 90 90 84 84 83 83 
Respondents  255 255 255 255 255 255 233 233 231 231 
App uses 10621 10621 10985 10985 10985 10985 5263 5263 4790 4790 
DIC 97661 94741 3086 3064 12466 12465 2511 2512 35598 35596 

Notes:  *p<0.05, ** p<0.01, *** p<0.001; † Coefficients and variances rescaled for logistic models to allow comparison of nested models as recommended 
by (Snijders and Bosker 2012, Hox, Moerbeek et al. 2017); Standard errors in parentheses. 
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As before, the models were fitted in MLwiN, using the same MCMC estimation 

conditions as those fitted in RQ1. The addition of the device characteristics means 

that for continuous outcomes equation one becomes: 

𝑦𝑖𝑗𝑘𝑙 =  𝛽0 + 𝐗β𝒌 +  𝑓0𝑙 + 𝑣0𝑘 + 𝑢0𝑗𝑙 + 𝑒𝑖𝑗𝑘𝑙 (4) 

and for binary outcomes equation two becomes: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗𝑘𝑙) =  𝛽0 + 𝐗β𝒌 +  𝑓0𝑙 + 𝑣0𝑘 + 𝑢0𝑗𝑙 (5) 

where in both cases 𝐗β𝒌 is the five device level predictor variables and their 

corresponding coefficients. The assumptions about the normality of the random 

terms, as expressed in equations two and four remain unchanged. 

For the logistic models, coefficients and variances have been rescaled for logistic 

models to allow comparison of nested models as recommended by Hox, Moerbeek 

et al. (2017) and Snijders and Bosker (2012). This overcomes the issue that because 

logistic models fix the residual variance at approximately 3.29 the effects of fixed or 

random effects may be inflated compared to the null model. 

Throughout, the Deviance Information Criterion (Spiegelhalter, Best et al. 2002) is 

used as a diagnostic tool for assessing model fit, that balances the likelihood of the 

model with the number of estimators. A lower DIC indicates a better fitting model. 

Overfitted models are penalised in terms of their DIC. The comparison made here is 

between the DIC of the device characteristics models (the left-hand models for each 

outcome in Table 5), and the DIC of the null models (presented in Table 4). 

The time taken to complete app uses was statistically significantly associated with 

three of the device characteristics included in the model. The first of these was the 

Operating System, where app uses completed using Android devices were typically 

associated with taking six seconds longer to complete (𝛽 = 6.09, 𝑝 < 0.01,

95% 𝐶𝐼 [2.05, 10.13]). App uses completed on tablets were associated with app use 

durations that were around seven seconds longer than those completed on 

smartphones (𝛽 = 7.06, 𝑝 < 0.01, 95% 𝐶𝐼 [2.16, 11.96]). Finally, increased RAM was 

associated with typically shorter app use durations. Each additional gibibyte of RAM 

a device had was associated with app uses completed on that device typically taking 
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just under five seconds less to complete (𝛽 = −4.78, 𝑝 < 0.01, 95% 𝐶𝐼 [−7.82,

−1.74]). Processor speed and camera quality were not statistically significantly 

associated with app use durations. The DIC for the null model of duration was 

97656, compared to a DIC of 97661 for the device characteristics model. This 

suggests the model including device characteristics is potentially a poor fit for the 

data. To explore whether this increased DIC was just the product of two of the device 

characteristics seemingly not being predictors of duration, a model retaining just 

those device characteristics that were statistically significant was fitted. This 

produced a DIC of 97657. Overall, this suggests that whilst the device used does 

affect the duration of app uses (as evidenced by the corresponding VPC of 0.08 in 

RQ1) the device characteristics captured in this study do not seem to account for 

these device effects very well. 

In terms of outlying app use durations, there were two device characteristics that 

were statistically significantly associated with a lower likelihood of app uses 

completed using that device being an outlier. The first of these was operating 

system, with Android devices having 44% lower odds of producing app uses with 

outlying durations (𝑂𝑅 = 0.56, 𝑝 < 0.01, 95% 𝐶𝐼 [0.35, 0.90]). Similarly, increases in 

processor performance were associated with a decreased likelihood of a device 

producing outlying durations (𝑂𝑅 = 0.84, 𝑝 < 0.05, 95% 𝐶𝐼 [0.69, 0.99]). The other 

three device characteristics were not statistically significantly associated with the 

likelihood of app use durations being outlying. The DICs for the null model and the 

device characteristics model were the same, 3086, indicating that the model with the 

addition of the device characteristics is not an improvement in terms of how it fits the 

data. Again, the reduced model with just statistically significant predictors was 

considered, this produced a DIC of 3085. As with non-outlying durations, this 

suggests that the device characteristics identified do not explain well the variance in 

whether an app use was a suspected outlier in terms of duration. This perhaps is 

less surprising than in the case of the non-outlying durations, as the null model 

suggested that device only account for 3% of the variance in whether an app uses 

had an outlying duration. 
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For the third outcome, the app use type, none of the device characteristics modelled 

were significant predictors of whether an app use was a scanned receipt, or a 

manually entered purchase/report of nothing bought.  

For the fourth outcome, the image quality, Android devices (𝑂𝑅 = 3.14, 𝑝 <

0.001, 95% 𝐶𝐼 [1.61, 6.11]), and tablets  (𝑂𝑅 = 2.25, 𝑝 < 0.05, 95% 𝐶𝐼 [1.01, 5.03]) 

were associated with an increase in the odds of receipt scan producing a low quality 

image. Higher RAM was associated with lower odds of producing low quality images 

(𝑂𝑅 = 0.49, 𝑝 < 0.05, 95% 𝐶𝐼 [0.27, 0.90]). The DIC of the null model of image 

quality was 2519, compared to a smaller DIC of 2511 for the corresponding device 

characteristics model. This suggests that the addition of the device characteristics to 

the model produced a better fitting model. 

For the final outcome, the number of lines, the only statistically significant 

association was the device type, with receipts scanned on tablets typically having 

one less item on them than those scanned on smartphones (𝛽 = −1.50, 𝑝 < 0.05,

95% 𝐶𝐼 [−2.83, −0.17]). The DIC for the null model was 35599, and the DIC for the 

device characteristics model was 35598. Again, this suggests that the inclusion of 

the device characteristics did not produce a better fitting model. This is not 

particularly surprising as the VPC for the null model for this outcome suggested that 

device accounted for less than one percent of the variance in the number of lines on 

a scanned receipt. 

RQ3: Do any associations between device characteristics and data quality indicators 

remain after controlling for respondent characteristics? 

To examine the potential effects of selection, respondent characteristics were 

introduced to each of the five models. The resulting models are the models 

presented on the right-hand column under each data quality indicator in Table 5.  

The addition of the respondent characteristics means that for continuous outcomes 

equation four becomes: 

𝑦𝑖𝑗𝑘𝑙 =  𝛽0 + 𝐗β𝒌 + 𝐗β𝒋 +  𝑓0𝑙 + 𝑣0𝑘 + 𝑢0𝑗𝑙 + 𝑒𝑖𝑗𝑘𝑙 (6) 
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and for binary outcomes equation five becomes: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗𝑘𝑙) =  𝛽0 + 𝐗β𝒌 + 𝐗β𝒋 + 𝑓0𝑙 + 𝑣0𝑘 + 𝑢0𝑗𝑙 (7) 

where in both cases 𝐗β𝒋 is the respondent characteristics variables and their 

corresponding coefficients. The assumptions about the normality of the random 

terms, as expressed in equations two and four remain unchanged. In addition to this, 

for the models for duration and outlying durations, an additional control, measured at 

the app use level, was introduced. This was what the type the app use was, included 

as this was highly predictive of duration. 

For all three device characteristics that were statistically significant predictors of app 

use duration, the effects were diminished when controlling for respondent 

characteristics. The first of these was the Operating System, where app uses 

completed using Android devices were typically associated with taking four seconds 

longer to complete (𝛽 =  4.12,   𝑝 < 0.05, 95% 𝐶𝐼 [0.69, 7.55]) when controlling for 

respondent characteristics, as opposed to six seconds longer when not. App uses 

completed on tablets were associated with durations that were around three and a 

half seconds longer than those completed on smartphones (𝛽 =  3.47, 𝑝 > 0.05,

95% 𝐶𝐼 [−0.63, 7.57]), down from seven seconds when not controlling for 

respondent characteristics. This measure was also no longer statistically significant. 

Finally, each additional gibibyte of RAM a device had was associated with app use 

durations that were a little under three seconds shorter (𝛽 = −2.70,   𝑝 < 0.05,

95% 𝐶𝐼 [−5.21, −0.19]), compared to just under five seconds shorter when not 

controlling for respondent characteristics. This perhaps suggests that some of the 

observed device effects may in fact be the result of selection.  Three respondent 

characteristics were significant predictors of app use duration: age (𝛽 = 0.20,   

𝑝 < 0.001, 95% 𝐶𝐼 [0.10, 0.30]), being retired (𝛽 = 7.39,   𝑝 < 0.001, 95% 𝐶𝐼 [3.43,

11.35]) and being otherwise inactive in terms of employment (𝛽 = 4.32, 𝑝 <

0.01, 95% 𝐶𝐼 [0.81, 7.83]). The DIC for the model including respondent 

characteristics dropped quite significantly, from 97661 to 94741. This suggests that 

the addition of these respondent characteristics quite substantially improved the 

goodness of the fit of the model. 
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When it came to outlying app use durations, the device’s OS had been found to be a 

significant predictor of whether an app use’s duration was outlying. This remained a 

significant predictor, with very little change in the magnitude of the effect (𝑂𝑅 = 0.54,

𝑝 < 0.01, 95% 𝐶𝐼 [0.32, 0.92]). The processor performance of the device had been a 

significant predictor in the device characteristics model, however the addition of the 

respondent characteristics resulted in a nonsignificant result, though the coefficient 

itself for this value remained unchanged. The only statistically significant respondent 

characteristic was that retired respondents had a higher likelihood of having an 

outlying app use duration (𝑂𝑅 = 1.85, 𝑝 < 0.05, 95% 𝐶𝐼 [1.34, 2.46]). Again, the 

decrease in the DIC (from 3086 to 3064) suggests that the addition of the 

respondent characteristics improved the fit of the model. 

Whilst none of the device characteristics included in the device characteristics 

models for activity types were found to statistically significant predictors the 

possibility was considered that a relationship may be seen when controlling for 

respondent characteristics. Therefore, the respondent characteristics model was 

fitted for this outcome. However, the device characteristics all remained statistically 

nonsignificant predictors of activity type in this model. 

Three device characteristics were significant predictors of image quality in the device 

characteristics models. All three remained statistically significant when controlling for 

respondent characteristics. The first two of these had slight reductions in the size of 

their odds ratios: 𝑂𝑅 = 2.91, 𝑝 < 0.01, 95% 𝐶𝐼 [1.44, 5.89] down from an odds ratio 

of 3.14 for the OS; and 𝑂𝑅 = 2.16, 𝑝 < 0.05, 95% 𝐶𝐼 [1.03, 4.55] down from an odds 

ratio of 2.25 for tablets compared to smartphones. However, these reductions were 

relatively small, and this stability of estimates between models supports that there 

are some direct effects of these device characteristics. The coefficient for the third 

significant predictor of image quality, the device’s RAM, changed very little 𝑂𝑅 =

0.50, 𝑝 < 0.05, 95% 𝐶𝐼 [0.27, 0.94] compared to a value of 0.49 in the device 

characteristics only model. None of the respondent characteristics were significantly 

associated with image quality. 

Finally, for the model of how many items were on scanned receipts the one 

significant predictor from the device characteristics model, device type, remained 

significant. The coefficient for this predictor changed little with the introduction of 
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respondent characteristics 𝛽 = −1.61, 𝑝 < 0.05, 95% 𝐶𝐼 [−3.18, −0.04] (compared to 

𝛽 = −1.50 previously). Gender was a significant predictor of the number of items on 

scanned receipts, with female respondents typically submitting receipts that were 

nearly two lines longer 𝛽 = 1.86, 𝑝 < 0.001,   95% 𝐶𝐼 [0.68, 3.04]. The slight 

decrease in the DIC (35596 compared to 35598) suggests the model with both sets 

of characteristics was a better fit for the data. 

6 Discussion 

This paper expands upon the existing device effects literature by moving beyond 

comparing the broad categorisations of smartphone, tablet and PCs. Instead, this 

paper is the first, to date, to consider the effects of the models of mobile devices 

used for survey tasks. To achieve this, models were fitted that consider the potential 

for homogeneity amongst survey responses that were completed using the same 

model of mobile device.  

This research also sought to explore what characteristics of mobile devices might be 

contributing to any observed device effects. Some device characteristics were 

captured in the data collection task (the Understanding Society Spending Study) 

itself. However, to supplement this selected device characteristics were coded using 

workers from Amazon mTurk to complete data collection. To the best of the author’s 

knowledge this paper is the first example of using mTurk to collect paradata after the 

main stage of data collection has been completed. It may be possible to harness 

mTurk to collect other types of paradata, or perform other data processing tasks, 

such as coding of textual responses. One of the major advantages of this would be 

that mTurk represents a fast and inexpensive way of achieving this.  

The results of RQ1 suggest that there were device effects in the Spending Study. 

The device level VPCs ranged from <0.00 to 0.22, which is of a similar magnitude to 

those reported within the interviewer effects literature (e.g. O’Muircheartaigh and 

Campanelli 1998, West and Olson 2010, Jäckle, Lynn et al. 2011). The evidence is 

not strong enough to suggest that survey researchers should be as concerned about 

device effects as they are about interviewer effects. However, based on these 

results, it seems that further investigation into the potential for device effects is 

warranted. For example, examining whether mobile device model clustering effects 
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are found when considering the kinds of data quality indicators traditionally examined 

in questionnaire-based surveys, for example straightlining, acquiescence, mid-point 

responding, item nonresponse, and primacy effects.  

One of the results from RQ1 stands out, namely that nearly a quarter (0.22) of the 

variance in the quality of the image was a result of the model of device used to take 

the picture of the receipt. Whilst this measure if very specific to the context of the 

Spending Study, it does suggest that device effects may be more of a concern when 

mobile devices are being harnessed for enhanced data collection, for example 

asking respondents to take photographs, collecting GPS data, collecting data from 

wearables. This is potentially problematic, and also warrants further study, as the 

ability to collect these kind of data has widely been regarded as an important part of 

the future of role of surveys (Couper 2013, Link, Murphy et al. 2014). 

From a survey design perspective, the potential of having to take into consideration 

the wide variety of mobile devices available to respondents is daunting. This is 

without taking into consideration the variety of models of desktops and laptops that 

might also be used to respond to web surveys. The 90 devices used by the 255 

respondents in the Spending Study suggest that even an approach of testing for the 

most commonly used devices may not be sufficient (particularly as the pool of 

commonly used devices is likely to change relatively frequently). Attempting to test a 

survey app or website on physical versions of this many devices is unlikely to be 

feasible, therefore alternative approaches may be needed. One approach may be to 

use services such as Amazon’s AWS Device Farm, or Google’s Firebase Test Lab 

that allow testing of apps or websites across many digital emulations of physical 

devices. 

With regards to RQ2, results of testing for specific device characteristics that are 

related to data quality indicators were mixed. Two of the most important device 

characteristics across the five measures were the Operating System and whether 

the device was a tablet or smartphone. This is perhaps reassuring, as it suggests 

that comparisons between categories, as has previously been the case in the 

majority of the device effects literature, may suffice. However, a third characteristic, 

the amount of RAM a device has, was also related to more than one data quality 
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indicator. This is more problematic, though perhaps could be overcome through 

careful consideration at the survey design stage.  

As in RQ1, the quality of the images produced when scanning receipts was the only 

outcome where there was particularly convincing evidence of device effects. That the 

amount of RAM a device has was a significant predictor when the quality of the 

camera was not was an unexpected result. The earlier consideration of how Sudman 

and Bradburn’s (1974) conceptual framework for interviewer effects can be applied 

to device effects perhaps sheds some light on this result. It seems possible this 

finding is consistent with either the first or second source of bias. The first 

explanation may be that some portion of the allocation of memory in the photography 

process was assigned to the device to manage, and subsequently differences across 

devices resulted in either poorer quality images being captured, or in some cases no 

images at all. Alternatively, even if the allocation of RAM was adequately accounted 

for when the app was programmed, it is possible that circumstances beyond the 

control of the programmers resulted in devices running out of RAM. Ultimately, as 

this study used a pre-existing app developed by a commercial partner, it is not 

possible to examine the underlying software of the app to attempt to uncover which 

of these accounts best explains this finding. However, it is felt that making the 

parallel to interviewer effects is useful for considering how to think about device 

effects both conceptually and methodologically. Further consideration of how the 

device used to complete a web survey acts in the place of an interviewer may have 

implications for best practices for designing web surveys. 

To illustrate the potential magnitude of the combined effects of the device’s 

characteristics of a specific device model it is useful to examine the change in odds 

between devices that had a high and low likelihood of producing a low-quality image. 

The device model with the highest odds of producing a low-quality image was the 

Motorola Moto E, an entry-level budget smartphone targeted at first-time smartphone 

buyers (Gibbs 2014). In contrast, the device model with the lowest odds of producing 

a low-quality image was the Google Pixel XL, a device that was optimised for its 

photography capabilities (Goodwin 2017). Both devices were Android smartphones, 

the Moto E had a 5MP camera, 1GiB of RAM and a processor score of 0.63 and the 

Pixel XL had a 12.3MP camera, 4GiB of RAM and a processor score of 4.08. 
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Assuming all else (that is, the respondent) is kept constant, the difference in the 

likelihood of producing a low-quality image between the two devices produces an 

odds ratio of 48.75. This suggests the odds of a Moto E producing a low-quality 

image are 4775% higher than on the Google Pixel XL.  

This perhaps offers an overly extreme comparison. As a more conservative 

comparison we can look at the devices with the lowest and highest likelihood of 

producing a low-quality image amongst those devices that were used by more than 

one respondent. Amongst these devices, the device model with the highest 

likelihood was the Apple iPad 2 with Wi-Fi only capabilities, this was an iOS Tablet, 

with a 0.70 MP camera, 0.5 GiB of RAM, and a processor score of 0.59. The lowest 

was the Samsung Galaxy S7 edge, an Android smartphone, with a 12MP camera, 

4GiB of RAM, and a processor score of 3.77. The device characteristic values for 

these two devices are also documented in Table C1. The difference in likelihood 

between these two devices produced an odds ratio of 20.62, which means the odds 

of the iPad producing a low-quality image were 1962% higher. 

In terms of assessing selection effects, the evidence from RQ3 is consistent with 

some of the observed device effects being the result of selection. The image quality 

outcome was the main indicator where the device effects did not seem to 

substantially disappear when controlling for respondent effects. This seems to further 

support the idea that device effects are most problematic for outcomes that 

specifically rely on smartphone capabilities to perform tasks beyond those in a 

traditional survey.  

It is important to acknowledge that this study is not without its limitations. Just as in 

Struminskaya, Weyandt et al. (2015) and Lugtig and Toepoel (2015) it is not possible 

to fully disentangle device effects from selection effects. Both of these studies made 

attempts to do this by looking at transitions in the devices used, however this was 

not possible in the Spending Study, meaning the only way to try to disentangle these 

two mechanisms is through the use of statistical controls. The success of identifying 

and controlling for relevant respondent characteristics is likely to always be limited. It 

is possible to identify far more potential respondent characteristics that may affect 

device selection, the challenge comes in identifying characteristics for which 

measures can be obtained, and that make good statistical controls, for example 



37 

 

needing to be measured pre-selection (Gelman and Hill 2006). Preferably the 

solution to this issue would be an experimental design, allocating respondents to 

specific models of devices, however this is likely to prove prohibitive in terms of cost. 

Secondly, without some form of validation for the data collected in the study it is 

necessary to use indirect measures to look at data quality. A validation study that 

examined the effects of device models on sources of error would be a useful addition 

to the growing literature on device effects. 

Finally, the Spending Study is a particular use of mobile devices for data collection. 

The question remains how generalisable the findings presented here are to survey 

research more broadly. In response to this, in the first instance, it seems likely that 

the results will be generalisable both to studies that very closely resemble the 

Spending Study (e.g. making use of cameras on mobile devices) but also for other 

studies that make use mobile device features to collect data beyond that which is 

traditionally captured in surveys, for example: tracking of health behaviours, 

collecting, GPS data, or administering “in-the-moment" surveys. In addition to this, 

hopefully the approach of using the literature on interviewer effects to inform how to 

think both conceptually and methodologically about device effects may also be 

relevant in more traditional survey settings. 
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