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Non-technical summary

To correct for non-response bias, household (HH) panel surveys release inverse
propensity non-response (IP-NR) weights that adjust selection weights for non-
response. However, often some respondents lack selection weights, so cannot be
assigned IP-NR weights (the ‘zero weights’ problem). Previous solutions to this issue,
which reduces weighted dataset quality, have limitations. Sharing with unweighted
respondents the existing selection weights of HH members then estimating IP-NR
weights requires an existing selection weight in the HH. Predicting selection
probabilities for such respondents then estimating IP-NR weights is model based, uses
only responding HH probabilities, and requires assumptions when adjusting for
multiple HH selection paths. Hence, two new procedures are introduced. Both form
clusters of unweighted and existing weight individuals with similar characteristics, and
split the existing weights among cluster members. Split Selection (SS) weighting splits
selection weights, then re-estimates IP-NR weights. Split IP-NR (SIP-NR) weighting
splits estimated IP-NR weights. Procedure performance is then evaluated, using the
UK Household Longitudinal Study COVID-19 Study datasets. Both performed well in
increasing dataset size and subgroup analysis feasibility, and in reducing non-response
biases and precision loss: indeed, precision loss was lower with SIP-NR weights than

IP-NR weights. The use of these procedures is then discussed.
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Abstract:

Household panel surveys release inverse propensity non-response (IP-NR) weights
that adjust selection weights for non-response. However, often some respondents
lack selection weights, so cannot be assigned IP-NR weights. Previous solutions to this
issue have limitations. We introduce two new procedures for weighting unweighted
individuals. Both split the existing weights of individuals with unweighted individuals
with similar characteristics. We evaluate procedure performance using data from the
UKHLS COVID-19 Study, and find both perform well in increasing dataset sizes and
reducing non-response bias and precision loss. We then discuss their broader use in

survey design.
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1. Introduction

Reducing non-response bias is a task faced by all survey designers (Groves et al. 2001).
Bias-reduction measures may be undertaken during data collection, such as ensuring
the survey sample reflects the study population and obtaining responses from all sub-
groups (‘bias prevention measures’: Groves & Heeringa 2006; Wagner 2008). They
may also be undertaken post data collection (‘bias-adjustment measures’), of which
the most common is the supply of non-response weights that map respondents to
study populations (Valliant & Dever 2013; see Little & Rubin 2014 for alternative
methods).

If non-respondent information exists for probability surveys, Inverse
Propensity Non-Response (IP-NR) weights are normally supplied. These adjust
selection weights (the inverse of the selection probability) for the inverse of the
probability of responding following selection, that is, IP-NR weight = selection weight
x NR weight. They perform better in terms of bias reduction and precision loss
(unequal weights over-inflate estimate variances: Little & Vartivarian 2005) than, for
example, weights that calibrate respondents to population totals (e.g. Moore et al.
2024). The use of IP-NR weights, however, is not without its issues. One is that, in
household (HH) panel surveys, it may not be possible to weight all respondents
(Schonlau et al. 2013), which is termed in this paper the ‘zero weights problem’. Data
from these surveys are often re-purposed by supplying weights enabling cross-
sectional analyses. However, sample members are selected within HHs, with selection
probabilities derived from HH values, so such weights cannot be assigned to new HH

entrants or when HHs split: the selection probabilities would need adjusting given



previous HH membership due to multiple selection paths. In addition, longitudinal
adjustments for non-enumeration in items detailing HH characteristics may be made
to individual selection weights (e.g. University of Essex & Institute for Social and
Economic Research 2019), meaning that those not enumerated at all previous waves
cannot be weighted (see also section 2.4).

Numbers of non-IP-NR weighted respondents can be substantial, for example,
28% in the 2009 wave of the Panel Study of Income Dynamics (Heeringa et al. 2011).
This decreases weighted dataset quality as smaller datasets have larger sampling
errors, make accurate sub-group analyses less feasible and, if they reflect study
populations less well, can lead to increased non-response bias and precision loss after
weighting (Schouten et al. 2016; Moore et al. 2024). Moreover, interviews avoidably
excluded from datasets raise concerns given the costs for survey organizations and

participants of collecting data.

Solutions to the zero-weight problem which permit survey estimation are used
by established surveys (Schonlau et al. 2013). The first is HH weight sharing (Ernst
1989; Lavallée 1995; Heeringa et al 2011; Taylor et al. 2018; University of Essex &
Institute for Social and Economic Research 2019). With this method, original sample
members with (existing) selection weights share them with unweighted respondents
in the same HH. Movers with existing weights retain them to share with others in their
new HHs. Then, IP-NR weights are estimated for the larger dataset using the shared
selection weights as inputs. The second is selection probability prediction (Haisken-
Denew & Frick 2005; Watson 2012). With this method, wave 1 HH selection

probabilities are predicted for unweighted respondents after modelling existing



values using survey information. These probabilities are then used to adjust current
wave equivalents for multiple selection paths, individual probabilities/weights derived
from them, and IP-NR weights are estimated for the larger dataset using the new
selection weights as inputs. However, beyond requiring HH membership information
to collected, both methods have limitations. HH weight sharing produces unbiased
estimates (see also Lavallée 2007; Zhang 2021) but requires an existing weight in the
HH to share, so respondents not in such HHs remain unweighted (for example, 16% in
the 2008 wave of the British Household Panel Survey: University of Essex & Institute
for Social and Economic Research 2023). Selection probability prediction weights all
respondents, but is model based with predictions made using only responding HH

probabilities, and adjustments for multiple selection paths involve assumptions.

These limitations are a major drawback for the survey we focus on in this
paper, namely, the COVID-19 Study carried out as part of the UK Household
Longitudinal Survey (UKHLS). The UKHLS is an annual, multi-mode, multi-domain HH
panel survey of people living in the UK. It is based on probability sampling and users
are supplied with IP-NR weights which can be used to make high-quality population
inferences (Benzeval et al. 2020). Consequently, the UKHLS is widely used by decision-
makers and researchers. During the COVID-19 pandemic, the team also fielded the
UKHLS COVID-19 Study, a series of surveys that captured information from main
survey participants more frequently. For full details, see section 2.2 and the Study
User Guide (Institute for Social and Economic Research 2021) and website:

https://www.understandingsociety.ac.uk/topic/covid-19.
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The UKHLS team also supply IP-NR weights mapping COVID-19 Study
respondent sample to the UK population (see section 2.3). The Study sample was
those enumerated in HHs participating at either waves eight or nine at that time or in
the time up to Study inception (i.e. at wave 10 / or in the early parts of wave 11 data
collection) for whom email contact details existed). The IP-NR weights adjust the main
survey non-response weights (in effect, the COVID-19 Study selection weights) for
these individuals for (COVID-19) Study non-response (Moore et al. 2024). However,
depending on the survey wave, between 15-25% of Study respondents are not IP-NR
weighted because they lack main survey weight inputs (see sections 2.3 and 5.1). Both
cross-sectional and longitudinal Study weights are affected, as with the latter only
response to the Study was considered. Moreover, existing solutions to the zero-
weight problem are not useful. Neither HH weight sharing nor selection probability
prediction is possible because HH structure was not enumerated in the COVID-19
Study (it is not formally a HH panel survey like the main survey), and HH information
from the main survey cannot be used instead because some was two or more years
out of date when the pandemic started. It should also be noted that no alternative
natural links exist between weighted and unweighted respondents, so other methods
similar to HH weight sharing that utilise such links, collectively known as indirect
sampling methods (see Lavallée 2007; Zhang 2021 for details), cannot be employed

either.

In this paper, two new procedures that address the zero weights problem are
outlined. Both are based on forming ‘matching-clusters’ of unweighted and existing

weight individuals with similar characteristics, and splitting the existing weights



among cluster members. The first, Split Selection (SS) weighting, splits original sample
member (existing) selection weights, then estimates the survey wave IP-NR weights.
The second, Split IP-NR (SIP-NR) weighting, splits survey wave IP-NR weights estimated
for those with existing selection weights. Then, procedure performance is evaluated,
using the COVID-19 Study datasets. The sizes of datasets weighted by each procedure
are reported, along with the characteristics of included respondents, to enable sub-
group analysis feasibility to be studied. In addition, non-response bias reduction and

precision loss due to weighting is quantified.

The paper proceeds as follows. In section 2, the two UKHLS surveys and
existing weighting procedures are described. In section 3, the two new procedures are
detailed. In section 4, methods used to evaluate procedure performance are outlined.
In section 5, evaluation results are reported. In section 6 the implications of our

research for the COVID-19 Study and survey design in general are discussed.

2. Considered surveys

2.1. Understanding Society: The UK Household Longitudinal Study (UKHLS)

The UKHLS main survey annually follows - up a sample of people living in the UK
(Institute for Social and Economic Research 2022). Interviews are sought from all
adults in participating HHs. The survey began in 2009, and includes respondents from
the preceding British Household Panel Survey, which beganin 1991. It has a sequential
mixed-mode design: some sample members are allocated to web and others to face-

to-face interview, with follow up in other modes. Its sample is constructed from



probability samples, with non-response carefully modelled (Lynn & Kaminska 2010;
Lynn et al. 2012). Research shows that the survey continues to support valid

population inference (Benzeval et al. 2020).

2.2. UKHLS COVID-19 Study

The UKHLS main survey is not set up to provide information at pace, so when the
COVID-19 pandemic began a more frequent web survey was fielded to record how it
and associated policy responses were affecting respondents. The COVID-19 Study
sample was all adults (16+) in HHs responding at main survey Waves 8 or 9, who had
not dropped out, died or emigrated as of April 2020. Wave 1 of the Study was fielded
in April 2020, with eight further surveys undertaken (some non-respondents were also
followed up by telephone, but the focus here is on web respondents: see University of
Essex & Institute of Social and Economic Research 2021 for full details of the COVID-

19 Study).

2.3. COVID-19 Study IP-NR weight construction

In the December 2021, IP-NR weights were released which map COVID-19 Study
respondents to the UK population at the time of main survey wave 10 (2019-20),
updated for mortality and emigration but not immigration. Cross-sectional forms are
the product of respondents main survey wave 10 cross-sectional non-response
weights and the inverses of their estimated probabilities of responding to the Study
wave; the longitudinal forms are the product of a chain of weights derived given the

probability of wave 1 response conditional on possessing the main survey weight, of
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wave 2 response conditional on wave 1 response, and so on. The main survey wave
10 weight was used as the selection weight (before, the wave 9 weight was used) as
data collection was almost complete in March 2020 and more of the Study sample
possessed it. IP-NR weighting depends on possessing this weight, so its derivation (and

who does not possess it) is detailed in section 2.4.

Regression was used to estimate response propensities, with main-survey
wave 10 predictors for cross-sectional weights and first weights in the longitudinal
chains. For later weights in longitudinal chains, some predictors were replaced with
the same variables from the COVID-19 Study because only previous wave information
was needed. Predictors included demographics, HH structure, economic, health and
survey design variables. If many predictors exist, model overfitting can occur (Harrell
2001; Burnham & Anderson 2002), causing precision loss, so they were selected using
logistic regression with a Least Absolute Shrinkage and Selection Operator (Lasso)
procedure (in the Stata package ‘lassopack’: Ahrens et al. 2020), which excludes
variables by shrinking unstable coefficient estimates towards zero without the need
for statistical tests (Tibshirani 1996; Steyerberg et al. 2001). See the Appendix for more
details of these procedures. Finally, weights were trimmed to restrict precision loss
(see Valliant & Dever 2018): values more than 25 times the median were replaced with
the threshold value, which limited precision loss to acceptable levels while still

reducing biases (Moore et al. 2024).

11



2.4. UKHLS main survey cross-sectional non-response weight construction

The main survey weight acting as the selection weight in COVID-19 Study IP-NR weight
construction is the wave 10 cross-sectional non-response weight. This weight is the
wave 10 cross-sectional enumerated sample member weight, adjusted for non-
response after modelling wave 10 response using HH questionnaire predictors. The
wave 10 cross-sectional enumerated sample member weight is the wave 10
longitudinal enumerated sample member weight shared with (some) HH members
(see next paragraph). The wave 10 longitudinal enumerated sample member weight
its previous wave value, adjusted after modelling (non-) enumeration in the wave 10
HH questionnaire, using predictors from the similar wave 9 questionnaire. The waves
7-9 equivalents are computed similarly, as is the wave 6 weight, except the input is
the wave 6 inclusion weight, which combines an inclusion weight for refreshment
sample members entering the survey at the wave with the wave 6 longitudinal
enumeration weight computed as outlined above for others enumerated at the wave,
The waves 3-5 longitudinal enumeration weights are also computed as above, as is the
wave 2 weight, except the input is the wave 2 inclusion weight, the inverse of sample
member selection probability. For the derivation of these latter probabilities, see
University of Essex & Institute for Social and Economic Research (2019).

HH weight shared cross-sectional enumeration weights are used as selection
weights when estimating the cross-sectional non-response weights because weighted
dataset sizes are larger than when their longitudinal counterparts are used. New
entrants to original sample member (OSM) HHs (temporary sample members: TSMs)
lack longitudinal enumeration weights, preventing non-response weight estimation.

So do children born to OSM mothers or non-OSM fathers (permanent sample

12



members: PSMs),, OSMs who move from sample HHs, and OSMs in HHs not
enumerated at one or more previous waves. HH weight sharing provides enumeration
weights and enables non-response weight estimation for some of these individuals by,
in HHs in which only some members have longitudinal weights, instead assigning all
HH members as their weight an equal share of the existing longitudinal weight HH
sum. In addition, newborns are assigned their mother’s longitudinal weight, and, if
they possess them, OSMs who move to new HHs take their longitudinal weight with
them (to share with other HH members). It should be noted though, that these
methods do not enable non-response weights to be estimated for all respondents.
Those in HHs not enumerated at all waves remain without enumeration weights and

cannot be weighted.

3. Procedures to weight to non-IP-NR weighted COVID-19 Study respondents

Our two new procedures address the problem of weighting the zero-weight
individuals mentioned at the end of the last section who remain without non-response
weights after IPNR weighting and HH weight sharing has been undertaken. Without
loss of generality, particular attention is paid to weighting these individuals in the
UKHLS COVID-19 Study. In the Study (see also Introduction), they are joined in the
sample by other similarly unweighted individuals such as those enumerated in main
survey wave 8 / 9 HHs at wave 10 or during the early part of wave 11 data collection,
and some TSMs and PSMs, who are not provided with main survey weights due to
UKHLS sample considerations. Together, this group provides 15-25% of Study
respondents. Neither (further) HH weight sharing nor selection probability prediction

13



can be used to provide weights for individuals in this group because HH membership
was not enumerated in the Study and similar information from the main survey can
be two or more years out of date. In addition, no alternative natural links exist
between them and weighted individuals. so other indirect sampling methods cannot

be used.

Both procedures involve forming matched-clusters, that is, clusters formed by
matching weighted and unweighted respondents with similar characteristics, and then
splitting the matched weights between the cluster members (the term ‘splitting’ is
used to distinguish these procedures from weight sharing methods). As explained
earlier, the ‘selection” weights used in COVID-19 Study IP-NR weight estimation are
the non-response weights for respondents to wave 10 of the main survey. The sample
of individuals with these weights can be viewed as arising from an indirect sampling
scheme (Lavallee 2007) or, more generally, a bipartite incidence graph sampling (BIGS)
scheme (Zhang and Patone 2017; Zhang 2022). However, the final Study sample is not
BIGS because it also includes individuals for whom information on links with existing

HHs is unavailable (who hence would not be weightable).

Informally, let j index the sample individuals with selection weights, and [
index hose left-out individuals without weights. The task our procedures perform is to
calculate the COVID-19 Study weights (for a given Study wave taken to be wave 1
without loss of generality). These are Wj/pj and w;/p;, where w; is the available
selection weight, w; is an the unknown selection weight to estimated by splitting the

w;j, and p; and p; are response propensities to be estimated using suitable regression
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model common to both groups. The two procedures are alternative ways of

estimating the Study non-response weights.

An informal framework within which we set out the assumptions under which
our procedures lead to valid inference is set out in Appendix A.2. In summary, we show
that our procedures can be used to obtain moderately conservative and design-
consistent inference provided the analyst is able to choose a selection of variables Z
where a) exchangeability holds: that is, for unit [ with Z; = z, we can find at least one
Jj with Z; ~ z such that selection weight w; can be split with [; b) response to each
wave of the Study is missing at random given Z, that is, the response propensity p -
the probability of responding to questionnaire - isindependent of the survey variables;
and c) the split weight is regular consistent estimator of the true unknown weight, The
different sets of weights we refer to in the subsequent discussion are described in

Table 1.

3.1. Split selection (SS) weighting

The first procedure is Split Selection (SS) weighting. Matched clusters are created using
variables from main survey wave 10, the (existing) selection weights w; are splitamong
cluster members, and then (COVID-19) Study IP-NR weights 1/p; and 1/p; are
estimated for the larger dataset. In step one, the clusters are defined as follows:
synthetic selection weights are predicted for unweighted respondents based on the
linear regression of the logs of respondent existing selection weights on the main

survey wave 10 characteristics (weight logs are modelled to prevent negative values);
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then, the synthetic weights of unweighted respondents are transformed back to the
natural scale, and these weights used along with the existing weights to define clusters
of respondents, with the weights effectively acting as proxies for their characteristics,
in the following way. The existing selection weight w; (or weights if there is more than
one of the same value) closest to the value of the synthetic weight for [ is identified,
and pair (j, 1) are taken to form a cluster. If a synthetic weight is equally close to two
(or more) existing selection weights, one (or more) larger and one (or more) smaller,
then the unweighted respondent is defined as forming a cluster with the respondent(s)
with the larger existing weight(s) to prevent existing weight respondents from being
included in more than one cluster. A graphical depiction of these different ways in

which clusters may be defined is presented in Fig. 1.

In step two, the existing selection weights in each cluster can be split among all

the cluster members as follows:
n,
Weplit = Zjil Wj/nc = Wj/nc (1)

where n. is the number of units in matched-cluster ¢ and is equal to 2 unless there
are ties. Informally, both w; and w; in the cluster now receive wgy;;;. This calculation
is analogous to the weight splitting proposed by Lavallee (2007). A justification of it
can also be based on the simultaneous sampling scheme proposed by Robbins et al.
(2021, section 2.1.2) by assuming that the sample with selection weights and the
sample without weights were obtained using different selection procedures, both of
which are ignorable given the wave 10 variables, but drawn from the same population
(a further working assumption is made that, given the wave 10 variables, the

probability of unit having a selection weight is 0.5). An alternative scheme is ‘weight
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donation’ in which j keeps its weight and w; is donated to [ to estimate unknown w;.
This leads to consistent inference if the selection probabilities for j and [ are equal
given the wave 10 variables. In practice, neither set of assumptions is likely to hold
exactly so the pragmatic issue is whether the procedure, using either splitting or
donation, preserves the estimates based on IP-NR weighted analyses while bringing

the greatest improvement in precision.

In step 3, the same main survey wave 10 predictors used to create the synthetic
selection weights are used to model the COVID—19 Study wave response propensities
among those with the new (split-) selection weights estimated in step 1, where model
selection is again undertaken using Lasso and post-selection prediction using OLS (see

section 2.3 for details). The product of the new selection weight

and the inverse of individual estimated response propensities gives the COVID-19

Study SS weights.

3.2. Split IP-NR (SIP-NR) weighting

An issue the SS procedure in the COVID-19 Study is that it is unable to provide weights
for the non-trivial number of Study respondents (see below) who did not respond to
main survey wave 10 and so do not possess the information used to predict synthetic
main survey (selection) weights and Study response propensities (see section 4.2 for
numbers of such respondents). Hence, a second procedure, SIP-NR weighting, is also

introduced that splits the IP-NR weights estimated for respondents to the Study wave
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with existing selection weights with unweighted respondents using information
present for everyone who responded in the COVID-19 Study, not just those with main

survey information.

The SIP-NR procedure proceeds as follows: in the first step, the COVID-19 Study
IP-NR weights are constructed as in section 2.3, by estimating the Study response
propensities p;by regressing the response to the Study wave on the wave 10 variables
among those with the (original and not split) main survey wave 10 ‘selection’ weights
(using Lasso for model selection as before) then computing the IP-NR weights Wj/pj;
in the second step, the IP-NR weights from step one are split with Study respondents
lacking such weights, using the Study variables from the relevant wave to match using
the same matching procedure as set out in section 3.1, to give the Study wave SIPNR

weight. .

In the application of SIP-NR weighting to the COVID-19 Study, predictors from
the Study wave in question are used, with three exceptions. Sex and Age are from the
main survey basic characteristics file, due to fewer missing values, and Education is not
asked in the Study, so an analogue is derived from the main survey responses. This
analogue is constructed as follows. Initially, a response is sought from 2020 calendar
year dataset i.e. wave 10 year 2 and wave 11 year 1 data. If such a response does not
exist, then one is sought from successively the wave 10 year 1 dataset, the wave 9
dataset, the wave 8 dataset, and the (part later collected) wave 11 year 2 dataset. If a
response is still absent (~¥300 at wave 1), then one is imputed using existing response
category probabilities. Following this, as with the Study IP-NR weights (see section

2.3), the split weights are scaled to have a mean of 1 and trimmed.
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4, Evaluation methods

4.1. Dataset sizes and respondent sociodemographic characteristics

COVID-19 Study weighted dataset sizes given the IP-NR, SS and SIP-NR procedures are
reported. In addition, the Study measured sociodemographic characteristics of
respondents weighted by each procedure are presented, enabling evaluation of sub-
group analysis feasibility. Main survey wave 10 information could not be used in the
latter comparisons because some SIP-NR weighted respondents lacked it (see section
3.2). Similarly, since COVID-19 Study non-respondents lacked Study measured

information, it was not possible to compare respondents to the Study sample.

4.2. Weight performance

4.2.1. Non-response bias reduction

The aim of weighting is to eliminate non-response bias, but unequal weights can lead
to inefficient estimators, so bias reduction may come with considerable loss of
precision (Little & Vartivarian 2005). Hence, both these elements must be considered
in performance evaluations. Concerning bias reduction, COVID-19 Study IP-NR and SS
weights are evaluated by quantifying the ability of weighted mean estimates of main
survey wave 10 measured characteristics to recover similarly measured benchmarks
computed for the Study sample using the main survey wave 10 weights. This approach
avoids difficulties associated with obtaining external benchmarks (e.g. Hand 2018).
The characteristics considered include both those in weight response propensity
models and those not. However, it is not possible to evaluate SIP-NR weighted mean

estimates on a similar basis because the main survey wave 10 non-respondents lack
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relevant auxiliary information (see section 3.2). Hence, these weights are instead
evaluated by quantifying their ability to recover benchmark Study IP-NR weighted
mean estimates of Study wave measured characteristics: such information exists for
all respondents. It should be noted though, that this means that it is not possible to
investigate whether they reduced biases more than Study IP-NR weights (SS weights

are also similarly evaluated for comparison).

Comparing benchmark and comparator weighted estimates is problematic in
terms of statistical testing because the individuals in the former datasets are a subset
of those in the later i.e. there are partial dependencies. Had dependencies been
complete (i.e. datasets consisted of the same individuals), a suitable paired test could
have been used. A test that does account for partial dependencies has recently been
proposed (Crossley et al. 2021; Moore et al. 2024), but its derivation relies on the
comparator dataset being a subset of the benchmark dataset rather than vice versa.
Hence, while it can be used to compare IP-NR weighted estimates to main-survey
weighted benchmarks (IP-NR weighted respondents are a subset of main survey
weighted respondents), it is not strictly appropriate to use it to evaluate SS and SIP-
NR weighted estimates because datasets include respondents not in the benchmark
main survey or COVID-19 Study IP-NR weighted datasets. In this paper, unpaired T
tests are used to compare benchmark and comparator estimates even though it
means that their dependencies are not accounted for. Despite the use of such a test
leading to an increased false-positive rate of false positives, we note that a) in the
current context it is less of an issue than an increased rate of false negatives, and b)

substantively similar results to those reported in section 5.3.1 are obtained using the
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test mentioned previously (unpublished results). In addition, as overall performance
measures, for each weight means across all studied characteristics of absolute
estimate differences compared to benchmarks, standardized by benchmark estimate

standard deviations, are reported.

4.2.2. Precision loss

To reduce precision loss, the last step in each of the weighting procedures is to replace
weights more than 25 times the weight median with the threshold value (trimming:
see section 2.3). A potential consequence of weight splitting is that if the extra
weighted respondents have similar characteristics to those with weights above this
threshold, the amount of trimming and therefore its likely impact on bias reduction
may be decreased. Hence, to test this possibility, first numbers and (due to differing
dataset sizes) proportions of weights trimmed given each weighting procedure are

quantified.

Second, the DEFF (Kish 1965) is used to quantify precision loss due to the
trimmed weights. This metric provides a conservative estimate (weighting variables
and outcomes of interest are assumed to be uncorreleatd) of the extent to which
survey sampling error is expected to depart from that under simple random sampling

with a 100% response rate. It is calculated as follows:

DEFF = 1 + (SD(weights) /mean(weights))? (7)
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where SD (weights) is the weight standard deviation. A larger value implies greater
precision loss. DEFFs are also transformed (= N / DEFF, where N is dataset size) to

estimate effective dataset size.

5. Results

5.1. Dataset sizes

COVID-19 Study dataset sizes are reported in Table 2. Cross-sectional datasets include
all weighted respondents to the wave. Longitudinal datasets include weighted
respondents to the wave and all waves prior, so are smaller in size. Both decrease in
size over waves due to attrition, except for the waves 8 and 9 cross-sectional datasets,
which are larger than the wave 7 equivalent (incentives to complete the survey were
offered at both waves). SS weighted datasets (see Table 1 for a summary of the
considered weighting procedures and the respondents that they weight) are 7-15%
larger than IP-NR weighted datasets. SIP-NR weighted datasets are 15-25% larger than

IP-NR weighted datasets.

5.2. Respondent sociodemographic characteristics

With nine COVID-19 Study waves, there are too many weight type (cross-sectional or
longitudinal) / wave combinations to report, so Table 3 focusses on the Study
measured characteristics of the waves 2 cross-sectional and 8 longitudinal datasets.
The former is reported in columns (i) to (iv)). IP-NR weighted respondent (the largest

dataset element) characteristics (column (i)) reflect those of all respondents (column
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(iv)), though younger Age category proportions are slightly lower, and older Age,
‘Tenure: Owned’ and ‘Long term health condition: Yes’ category proportions are
slightly higher. SS but not IP-NR (column (ii)) and SIP-NR weighted only respondents
(column (iii)) differ from IP-NR weighted respondents. Especially for SIP-NR only,
compared to all respondents, Male, older Age, Degree, ‘HH type: Single, no kid(s)’, ‘HH
type: Couple, no kid(s), ‘Tenure: Owned’ and ‘Long term health condition: Yes’
category proportions are lower, and younger age (sometimes much), A level, No
Qualifications, ‘Ethnic minority: Yes’, ‘Tenure: Mortgage’, ‘Tenure: Rented’ and ‘HH
type: Couple, kid(s)’ category proportions are higher. Though explicit comparisons
were not possible (non-respondents lacked Study information), these differences
should mean that the weight shared datasets better resemble the Study sample than

IP-NR weighted datasets.

Similar occurs with the wave 8 longitudinal datasets (columns v) to viii)).
Differences between the all respondent dataset (column viii)) and its wave 2 cross-
sectional equivalent are due to non-random attrition. There is also clear evidence with
these datasets that weight sharing makes subgroup analyses more feasible, with 44 IP-
NR weighted respondents aged 16-19 (rounded, 0.006 * 7325: column v) & see Table
1 for dataset sizes), and 94 (0.011 * 8569) in the SIP-NR weighted (all respondent)

dataset.
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5.3. Weighted dataset performance

5.3.1. Non-response bias reduction

In this section, waves two cross-sectional and eight longitudinal weight performance
is reported. Waves five and eight cross-sectional and two and five longitudinal weight
performance is reported in the Appendix and mentioned below. Wave two cross-
sectional weights perform well. IP-NR and SS weight performance in the statistical
tests evaluating the recovery of benchmark main survey measured and weighted
means is reported in columns i) to iii) in Table 4. Main survey estimates (for 10
characteristics in response propensity models, 5 not) are in column (i). IP-NR estimate
differences are small (column (ii)), with three statistically significant (maximum (max)
=0.023). SS weights perform worse (column(iii)), with seven significant (max = 0.023).
SS and SIP-NR weight performance in recovering benchmark Study measured IP-NR
weighted means is reported in columns i) to iii) in Table 5. IP-NR estimates (for 10
characteristics in response probability models, five not) are in column (i). SS estimate
differences are small (column (ii), with none significant (max = 0.009). With SIP-NR
weights (which can only be evaluated this way: see section 4.2.1) (column (iii)), one

difference is significant (max = 0.013).

Wave eight longitudinal weights also perform well. IP-NR and SS weight
performance in recovering benchmark main survey measured and weighted means is
reported in columns iv) to vi) in Table 4. Main survey estimates are in column (iv). IP-
NR estimate differences are slightly larger than for the wave two cross-sectional
weights (column (v)), with nine significant (max = 0.039). SS weights perform slightly

better (column (vi)), with seven significant (max = 0.033). Wave eight longitudinal SS
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and SIP-NR weight performance in recovering benchmark Study measured IP-NR
weighted means is reported in columns iv) to vi) in Table 5. IP-NR estimates are in
column (iv). SS estimate differences are small (column (v)), with none significant (max
=0.010). With SIP-NR weights, one difference is significant (max = 0.013). Results for
the other weights studied are comparable (see Appendix, Tables 1 to 4). Cross-
sectional SS weights perform slightly worse than IP-NR weights at recovering main
survey measured and weighted benchmarks at waves five and eight. Longitudinal SS
weights perform slightly worse than IP-NR weights at recovering such benchmarks at
wave two, but the two sets of weights perform similarly at wave five. SIP-NR weights
recover Study measured IP-NR weighted benchmarks slightly better than SS weights

except in the wave two longitudinal dataset, where the opposite is found.

In addition, as overall performance measures, in Figs. 2 and 3 for each
evaluated weight the means of absolute values of differences compared to benchmark
weighted estimates of characteristics reported in Tables 3 and 4, standardized by
benchmark estimate standard deviations, are presented. Results largely reaffirm those
from the statistical tests. With wave two cross-sectional weights, differences
compared to benchmark main survey measured and weighted means are reported in
Fig 2a. The mean of differences given IP-NR weighted means is 0.018 (largest single
value (LSV) = 0.066). That given SS weights is slightly larger (= 0.022), with the LSV
slightly smaller (= 0.049). Differences compared to benchmark Study measured IP-NR
weighted means are reported in Fig 3a. The mean of differences given SS weighted
means is 0.011 (LSV = 0.023). That given SIP-NR weights is slightly smaller (= 0.007),

with the LSV also slightly larger (= 0.026). With wave eight longitudinal weights,
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differences compared to benchmark main survey measured and weighted means are
reported in Fig 2b. The mean of differences given IP-NR weighted means is 0.043 (LSV
=0.111). That given SS weights is slightly smaller (= 0.034), with the LSV also slightly
smaller (= 0.093). Differences compared to benchmark Study measured IP-NR
weighted means are reported in Fig 3b. The mean of differences given SS weighted
means is 0.012 (LSV = 0.027). That given SIP-NR weights is similar (= 0.012), with the

LSV slightly larger (= 0.04).

Results for the other studied weights are comparable (see Appendix, Figs 1-4).
With wave five cross-sectional weights, the mean difference between benchmark main
survey measured and weighted means and IP-NR weighted means is 0.021 (LSV =
0.085). That given SS weighted means is slightly larger (= 0.024), with the LSV smaller
(= 0.060). The mean difference between benchmark Study measured IP-NR weighted
means and SS weighted means is 0.016 (LSV = 0.038). That given SIP-NR weights is
slightly smaller (= 0.009), with the LSV also slightly smaller (= 0.027). For wave eight
equivalents, the mean difference between benchmark main survey measured and
weighted means and IP-NR weighted means is 0.018 (LSV = 0.075). That given SS
weights is slightly larger (= 0.023), with the LSV smaller (= 0.058). The mean difference
between benchmark Study measured IP-NR weighted means and SS weighted means
is 0.013 (LSV =0.029). That given SIP-NR weights is slightly smaller (= 0.0011), with the

LSV also slightly smaller (= 0.025).

With wave two longitudinal weights, the mean difference between benchmark
main survey measured and weighted means and IP-NR weighted means is 0.021 (LSV

= 0.055). That given SS weights is slightly larger (= 0.026), with the LSV slightly larger
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(= 0.053). The mean difference between benchmark Study measured IP-NR weighted
means and SS weighted means is 0.010 (LSV = 0.02). That given SIP-NR weights is
slightly smaller (= 0.009), with the LSV slightly larger (= 0.029). With wave five
equivalents, the mean difference between benchmark main survey measured and
weighted means and IP-NR weighted means is 0.027 (LSV = 0.086). That given SS
weights is similar (= 0.027), with the LSV smaller (= 0.065). The mean difference
between benchmark Study measured IP-NR weighted means and SS weighted means
is 0.014 (LSV = 0.035). That given SIP-NR weightsis slightly smaller (= 0.007), with the

LSV also slightly smaller (= 0.025).

It should be noted that comparable results in terms of bias reduction were
obtained for the two procedures when ‘weight-donation’ (unweighted cluster
members are given weighted cluster member undivided weights) instead of weight-
splitting schemes were used in weight assignment (see also section ??). Procedure
weighted estimate differences compared to benchmarks and mean standardized
biases using weight donation were similar in size to when weight-splitting was used

(unpubl. results).

5.3.2. Precision loss

In Table 6, the number and proportion of weights trimmed (replacing weights more
than 25 times the weight median with the threshold value to reduce precision loss:
see section 4.2.2) in the cross-sectional and longitudinal waves 2, 5 and 8 datasets are

reported. Numbers are slightly greater for the SS than the IP-NR and SIP-NR datasets
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(which are similar). However, proportions tend to be lowest in the SIP-NR datasets,
implying that the extra respondents in these datasets are more similar to those with

extreme weights, decreasing the amount of trimming and its impact on bias reduction.

DEFFs and effective dataset sizes given the same trimmed weights are also
reported in Table 6. SS weight DEFFs are larger than IP-NR weight equivalents, but
SIP-NR weight DEFFs are smaller than equivalents for both other weight types,
implying that SIP-NR weights most reduced precision loss, followed by IP-NR then SS
weights. Given also differences in real dataset sizes, this meant that effective dataset
sizes were largest for the SIP-NR weighted datasets, then the SS weighted datasets,

then the IP-NR weighted datasets.

It should be noted that findings differed when weight-donation instead of
weight-splitting schemes were used in weight assignment. With weight donation, SIP-
NR weight DEFFs were larger than IP-NR and SS weight DEFFs, with the consequence
that SS weight effective dataset sizes were larger than SIPNR weight effective datasets
for three of the six datasets considered (unpubl. Results). These differences occur
because with weight splitting weighting otherwise unweighted individuals led to a
reduction in extreme weight value sizes (due to being split with unweighted individuals
with similar characteristics). With weight donation, the latter individuals are instead

assigned the forementioned weight, inflating weight variability.
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6. Discussion

We proposed two new procedures that assign weights mapping the survey
respondents to the target population that include those who, lacking selection
weights, cannot be weighted using Inverse Propensity Non-Response (IP-NR) methods
(recalling that IP-NR weight = selection weight * non-response weight). Both form
(matched) clusters of unweighted and existing weight individuals with similar
characteristics, and assign weights to unweighted individuals split (sum of existing
weights in cluster / total number of cluster members) or donate (assign as the
estimated weight values) the existing weights of cluster members. The accuracy of
inference for the different procedures and splitting/donation schemes depends on
how well the underlying assumptions described in section 3.1 hold for UKHLS and the
COVID-19 Study, which depends on the choice of variables used to match the weights
and model the response propensities. The first procedure, SS weighting, splits /
donates existing selection weights, then estimates IP-NR weights for the Study wave in
question. The second, SIP-NR weighting, splits / donates IP-NR weights for the Study
e estimated for those with existing selection weights (see Table 1 for a summary of

weights estimated).

Procedure performance was evaluated using the UK Household Longitudinal
Study (UKHLS) COVID-19 Study datasets. Evaluations considered weighted dataset
sizes and respondent sociodemographic characteristics, also enabling subgroup
analysis feasibility to be studied. In addition, non-response bias reduction and
precision loss due to weight use (weights are inefficient: Little & Vartivarian 2005) was

quantified. SS weighted datasets were 7-15% and SIP-NR weighted datasets 15-25%
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larger than IP-NR weighted equivalents, reducing sampling error. SS and SIP-NR
weighted dataset sizes differed due to some COVID-19 Study respondents not
responding to main survey wave 10 and so lacking the information used by SS
weighting to split selection weights (in contrast, SIP-NR weighting used information
from the survey wave, which existed for all respondents, to split IP-NR weights, though
SS weighting did benefit from it being possible to provide selection weights for Study
non-respondents as well as respondents with main survey wave 10 information: see
section 3). SS but not IP-NR and especially SIP-NR only weighted respondents differed
(were younger, less educated, less likely to have children, more likely to be ethnic
minorities) from IP-NR weighted respondents. Explicit comparisons were not possible
because non-respondents lacked Study information, but these differences should
mean that SS and SIP-NR weighted datasets better resemble the Study sample than IP-
NR weighted datasets (see also following paragraph). Moreover, subgroup analyses
will be more feasible: for example, there were more than twice as many respondents
aged 16-19 in the wave 8 longitudinal SIP-NR weighted dataset than in the IP-NR
weighted equivalent (as they only considered responses to the Study, longitudinal as

well as cross-sectional IP-NR weights suffered from zero weights).

Non-response bias was evaluated by quantifying how well weighted estimates
of respondent characteristics recovered benchmark estimates. Study IP-NR and SS
weighted mean estimates of main survey wave 10 measured characteristics were
statistically compared to main survey wave 10 weighted benchmarks. However, this
was not possible for SIP-NR weights because, as noted previously, some respondents

lacked main survey wave 10 information. Hence, though it meant that whether they
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reduced biases more than Study IP-NR weights could not be studied (extra
respondents may improve performance if datasets better resemble study populations:
Schouten et al. 2016; Moore et al. 2024), they were instead evaluated by comparing
mean estimates of Study measured characteristics to Study IP-NR weighted
benchmarks (SS weights were also similarly evaluated). Focusing on ‘split’ weights, the
tests showed that Study IP-NR weights recovered main survey weighted benchmarks
slightly better than SS weights in four of the six wave / type (cross-sectional or
longitudinal) combinations evaluated, in another the opposite was found, and the
weights performed similarly in the final combination. SIP-NR weights recovered Study
IP-NR weighted benchmarks slightly better than SS weights in three of the
combinations, in another the opposite was found, and the weights performed similarly
in the final two combinations. In addition, absolute differences were standardized by
benchmark estimate standard deviations and means calculated to provide overall
performance measures. Results were mostly similar to those from the statistical tests
(IP-NR weights performed very slightly better than SS weights in the combination
where the tests showed they performed equally well, and SIP-NR weights performed
very slightly better than SS weights in the two combinations where the tests showed

they performed equally well).

Precision loss was evaluated in several ways. First, weights were trimmed
(values more than 25 times the weight median were replaced with threshold values)
as a last step in weighting procedures to reduce precision loss. Trimming is likely to
decrease bias reduction, but with weight splitting less may be needed if the extra

respondents have the same characteristics as those with extreme weights. To study
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this, numbers and (given differing dataset sizes) proportions of trimmed weights were
quantified. Numbers trimmed increased with weight splitting, but proportions were
lower in SIP-NR weighted datasets than IP-NR or SS weighted datasets. This implies
that SIP-NR weighting enabled less trimming, decreasing impacts on bias reduction.
Second, for trimmed weights, precision loss was quantified using DEFFs (Kish 1965),
which estimate the extent to which sampling error departs from that given simple
random sampling with 100% response. All SS weight DEFFs were larger than IP-NR
equivalents, implying greater precision loss. However, SIP-NR weight DEFFs were
always smaller than equivalents given both the IP-NR and SS weights, implying that
SIP-NR weighting reduced precision loss compared to the other procedures. In
addition, DEFFs were transformed to estimate effective weighted dataset sizes. Given
also numbers of respondents in datasets, the SIP-NR procedure resulted in the largest

effective dataset sizes, followed by the SS procedure, then the IP-NR procedure.

Findings concerning bias reduction when weight-donation rather bias spltting
schemes were used to assign weights were similar to those outlined above. However,
patterns in DEFFs and estimated effective dataset sizes differed, with SS weight
datasets often being larger than SIPR weight datasets. These differences occur because
with weight splitting weighting otherwise unweighted individuals led to a reduction in
extreme weight value sizes (due to being split with unweighted individuals with similar
characteristics). With weight donation, the latter individuals are instead assigned the

forementioned weight, inflating weight variability.

This research has implications for both the UKHLS COVID-19 Study and survey

design in general. For the COVID-19 Study, it shows that the new procedures weight

32



more respondents than IP-NR methods, reducing sampling error and increasing
subgroup analysis feasibility, while maintaining and indeed improving weight
performance in terms of reducing non-response bias and minimizing precision loss.
Hence, as the procedure resulted in the most weighted respondents and the largest
effective weighted dataset sizes, in the December 2021 dataset release SIP-NR weights

were supplied (see Institute for Social and Economic Research 2021).

Concerning survey design more generally, the question arises as to whether the
new procedures can be used in other surveys. Respondents without cross-sectional
IP-NR weights occur in most HH panel surveys (Schonlau et al. 2013). Moreover,
previous solutions to this issue have limitations. Sharing existing selection weights
among HH members then estimating IP-NR weights provides unbiased estimates and
is used in many surveys (Ernst 1989; Lavallée 1995; 2007; Heeringa et al 2011; Taylor
et al. 2018; University of Essex & Institute for Social and Economic Research 2019;
Zhang 2021). However, it cannot weight those in HHs without existing selection
weighted members. Predicting wave 1 HH selection probabilities for unweighted
respondents, using these to adjust current wave values for multiple selection paths,
then estimating individual selection weights and IP-NR weights can weight all
respondents and is used in several other surveys (Haisken-Denew & Frick 2005;
Watson 2012). However, it is model based, predictions can only be made using
responding HH selection probabilities, and adjustments for multiple selection paths
require assumptions. By contrast, the new procedures can also (potentially: see

below) weight all respondents and are more easily implemented than selection
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probability prediction. In addition, in the COVID-19 Study they performed well at

reducing non-response bias and precision loss due to weight use.

That said, it is advised that the new procedures only be used to weight all non
IP-NR weighted survey respondents if there is no alternative i.e. if, as in the UKHLS
COVID-19 Study, HH structure is not enumerated. As noted previously, HH weight
sharing produces unbiased estimates, whereas weight splitting is justified on the basis
of exchangeability of weighted and unweighted respondents with the same
characteristics and so is model based. Moreover, SIP-NR weighting can only split the
weights of current wave respondents, so when less than 100% of sample members
respond, unweighted respondents may be assigned the (split) weights of those with
less similar characteristics than if all had responded (see also section 3.2). To a lesser
extent, this issue also occurs with SS weighting: only respondent selection weights can
be split (as mentioned in the last paragraph, an analogous issue also arises with
selection probability prediction). If the new procedures must be used, the evaluations
reported here suggest that SIP-NR weighting should be utilised. However, if
comparable auxiliary information exists for all respondents to the survey wave, for
example because they all responded to a previous wave (one reason for supplying
COVID-19 Study SIP-NR weights is that such information did not exist — see previously),
SS weights should be estimated and performance compared. This performance
comparison will also be of wider interest to survey designers: as noted previously, the
fore-mentioned lack of comparable information on all Study respondents also affected

the methods used to evaluate procedure performance in this paper.
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In surveys in which HH structure is enumerated, a different role for the new
procedures is envisaged: to weight those not weighted by HH weight sharing (see
Schonlau et al. 2013 for the suggestion that a similar strategy involving selection
probability prediction be used). If information on all HH members exists from HH or
individual questionnaires, a variation of SS weighting should be evaluated. Selection
weights or their analogues can be predicted for all enumerated sample members not
weighted by HH weight sharing, then, using the same information, IP-NR weights can
be computed after response propensity estimation for the larger sample (see section
2.4 for the use of the HH weight sharing element of this strategy in the UKHLS main
survey). If thisis not possible, SS weighting as utilized in this paper can instead be used
in the outlined procedure (though new survey entrants will not be weighted due to
lacking comparable auxiliary information), or, after IP-NR weight estimation using HH
weight shared selection weights, SIP-NR weighting can be utilized. With all methods,
weight performance should be evaluated, ideally compared to that of weights
estimated by other methods, including selection probability prediction. However, now
that multiple methods exist, it is also noted that given the benefits there is no reason
for survey designers not to seek to ensure that all respondents are supplied with non-

response weights.
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Table 1: The different forms of non-response weight estimated and evaluated in this

paper.

Table 2: Cross-sectional and longitudinal COVID-19 Study weighted dataset sizes.
Cross-sectional datasets contain respondents to the mentioned wave. Longitudinal
datasets contain respondents to all waves up to and including the mentioned wave
i.e. wave 4 includes respondents to all of waves 1, 2, 3 and 4. IP-NR datasets contain
only respondents with the UKHLS main survey wave 10 weight required for IP-NR
weight production. SS datasets contain the same respondents plus those with main
survey information, which together can be weighted by the SS procedure. SIP-NR / N
datasets contain all respondents, which together can only be weighted by the SIP-NR

procedure.

Table 3: COVID-19 Study focal wave measured sociodemographic characteristics of the
components of the wave 2 cross-sectional and wave 8 longitudinal datasets. We
present the characteristics of IP-NR weighted respondents (respectively columns (i) &
(v)), of respondents weighted by SS but not IP-NR methods (columns (ii) & (vi)), of
respondents weighted only by SIP-NR methods (columns (iii) & (vi)); and of all

respondents combined i.e. (i) + (ii) + (iii) and (v) + (vi) + (vii) (columns (iv) & (vii)).
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Table 4: COVID-19 Study wave 2 cross-sectional and wave 8 longitudinal weight
performance in recovering means of main survey measured and weighted
characteristics. Main survey weighted mean estimates and (in brackets) their
standard errors (‘wt. est.”; columns (i) & (iv)); tests of differences between such
estimates and estimates given COVID-19 Study IP-NR weights (columns (ii) & (v)); and
tests of differences between such estimates and estimates given COVID-19 Study SS
weights (columns (iii) & (vi)) are reported. * equals P<0.05, ** equals P<0.01, ***
equals P<0.001. Differences exist between the two sets of main survey estimates due

to more sample member deaths by wave 8.

Table 5: COVID-19 Study wave 2 cross-sectional and wave 8 longitudinal weight
performance in recovering means of COVID-19 Study measured IP-NR weighted
characteristics. COVID-19 Study IP-NR weighted mean estimates and (in brackets)
their standard errors (‘wt. est.”; columns (i) & (iv)), tests of differences between such
estimates and estimates given SS weights (‘wt. diff.”; columns (ii) & (v)), and tests of
differences between such estimates and estimates given SIP-NR weights (columns (iii)

& (vii)) are reported. * equals P<0.05, ** equals P<0.01, *** equals P<0.001.

Table 6: Numbers of trimmed weights and their proportions, and DEFFs and effective
dataset sizes given the COVID-19 Study waves 2, 5 and 8 cross-sectional and

longitudinal IP-NR, SS and SIP-NR weights.
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Table 1:

Weighting strategy

Methods

1) Inverse propensity
non-response (IP-NR)
weight

2) Split selection (SS)

weight

3) Split IP-NR (SIP-NR)
weight

a) For original survey sample members with (existing)
selection weights, model and estimate response
propensities for given survey wave.

b) IP-NR weight = selection weight * (1 / response
propensity).

a) Split the existing selection weights of original sample
members with unweighted survey sample members with
similar characteristics.

b) For this larger sample with the new weight, estimate
response propensities and compute IP-NR weights for
given survey wave as in 1).

a) For survey original sample members with existing
selection weights, estimate response propensities and
compute IP-NR weights for given survey wave as in 1).

b) Split the IP-NR weights computed for original sample
members in step a) with unweighted survey respondents
with similar characteristics.
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Table 2:

COVID-19 Study wave

1 2 3 4 5 6 7 8 9

Cross-sectional:

IP-NR 13994 12013 11515 11261 10616 9989 9915 10615 10489

SS 16604 14086 13453 13112 12332 11556 11471 12129 12250

SIP-NR/N 17761 14811 14123 13754 12876 12035 11968 12680 12818
Longitudinal:

IP-NR 11220 10293 9957 8857 8102 7610 7325 6857

SS 13106 11968 11061 10202 9286 8697 8335 7801

SIP-NR/ N 13698 12437 11458 10541 9574 8947 8569 8009
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Table 3:

Wave 2 cross-sectional Wave 8 longitudinal
IP-NR  SSnot SIP-NR All IP-NR  SSnot SIP-NR All
IP-NR only IP-NR only
(i) (ii) (iii) (iv) = (i) + (v) (vi) (vii) (viii) = (v) +
(ii) + (iii) (vi) + (vii)
Gender: Male 0.418 0.395 0.374 0.413 0.420 0.404 0.363 0.417
Age: 16-19 0.019 0.011 0.178 0.025 0.006 0.003 0.201 0.011
Age: 20-29 0.073 0.136 0.145 0.086 0.051 0.094 0.098 0.057
Age: 30-39 0.111 0.174 0.163 0.123 0.088 0.139 0.090 0.094
Age: 40-49 0.167 0.207 0.167 0.173 0.138 0.194 0.171 0.146
Age: 50-59 0.221 0.224 0.181 0.219 0.215 0.241 0.231 0.218
Age: 60-69 0.215 0.156 0.114 0.202 0.259 0.202 0.154 0.249
Age: 70-79 0.161 0.074 0.040 0.143 0.205 0.105 0.051 0.189
Age: 80-89 0.030 0.018 0.012 0.028 0.036 0.023 0.004 0.033
Age: 90+ 0.002 0.000 0.000 0.002 0.002 0.000 0.000 0.002
Qualifications: 0.506 0.518 0.440 0.505 0.514 0.530 0.461 0.515
Degree
Qualifications: A- 0.197 0.219 0.235 0.202 0.193 0.227 0.199 0.197
level
Qualifications: GCSE  0.290 0.256 0.311 0.286 0.288 0.240 0.330 0.283
or lower
Family type: Single, 0.109 0.120 0.092 0.109 0.110 0.130 0.141 0.113
no kid(s)
Family type: Single, 0.020 0.036 0.034 0.023 0.015 0.038 0.030 0.018
kid(s)
Family type: Couple, 0.302 0.302 0.200 0.297 0.349 0.362 0.239 0.347
no kid(s)
Family type: Couple, 0.202 0.245 0.308 0.213 0.162 0.207 0.295 0.171
kid(s)
Ethnic minority: Yes  0.103 0.124 0.171 0.109 0.076 0.082 0.126 0.078
Country: England 0.815 0.799 0.797 0.812 0.831 0.807 0.799 0.827
Country: Wales 0.060 0.057 0.057 0.060 0.054 0.045 0.060 0.053
Country: Scotland 0.084 0.100 0.099 0.087 0.078 0.105 0.103 0.082
Country: Northern 0.041 0.044 0.047 0.042 0.037 0.044 0.038 0.038
Ireland
Tenure: Owned 0.473 0330 0.241 0.442 0.547 0.409 0.302 0.524
Tenure: Mortgage 0.356 0.431 0477 0.372 0.310 0.397 0.474 0.324
Tenure: Rented 0.023 0.038 0.059 0.027 0.018 0.034 0.026 0.020
Long-term illness: 0.530 0.478 0.404 0.517 0.597 0.555 0.479 0.589
Yes
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Table 4:

Wave 2 cross-sectional

Wave 8 longitudinal

Main Covid Main Covid
IP-NR SS IP-NR SS
wtest.  wt diff. wt. diff  wtest. wt diff. wt. diff
(i) (ii) (iif) (iv) (v) (vi)
In IPW model:
Subjective  financial 0.716 0.005 0.015**  0.716 -0.011 -0.006
situation (SFS): (0.003) (0.003)
comfortable or OK
SFS: just about getting  0.203 -0.008 -0.013**  0.203 -0.003 -0.002
by (0.002) (0.002)
SFS: finding it quite / 0.081 0.003 -0.002 0.081 0.015***  0.008*
very difficult (0.002) (0.002)
Tenure: Owned 0.343 0.009 0.023***  0.343  -0.020** -0.005
(0.003) (0.003)
Tenure: Mortgage 0.341 - -0.015**  0.341 - -0.019**
0.021%** 0.021%**
(0.003) (0.003)
Tenure: Rented 0.119 0.004 -0.004 0.119 0.007 -0.003
(0.002) (0.002)
Tenure: Social 0.195 0.006 -0.004 0.195 0.033*** (0.027***
Housing (0.002) (0.002)
Low skill occupation 0.362 -0.003 -0.005 0.362 0.011 0.014
(0.004) (0.004)
Savings income? 0.372 -0.002 0.012%* 0.372 - -
0.034*** (0.032%**
(0.003) (0.003)
Behind with some or 0.059 -0.001 - 0.059 0.006* 0.003
all bills 0.008***
(0.001) (0.001)
Not in IPW model:
Income poverty 0.155 0.010* 0.005 0.155 0.027*** (0.025***
(0.002) (0.002)
Receives core benefit  0.054 0.003 0.001 0.054 0.010*** 0.008**
(0.001) (0.001)
Visited GP 0.700 -0.001 -0.003 0.700 0.004 0.005
(0.003) (0.003)
Smoker 0.144 0.023*** 0.016*** 0.144 0.039*** (.033***
(0.002) (0.002)
Hospital outpatient 0.433 0.002 0.005 0.433 0.004 0.009
(0.003) (0.003)
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Table 5:

Wave 2 cross-sectional

Wave 8 longitudinal

IP-NR SS SIP-NR IP-NR SS SIP-NR
wtest. wt. diff wtdiff. wt.est. wtdiff. wt.diff
(i) (ii) (iif) (iv) (v) (vi)

In IPW model:

Subjective financial 0.756 0.009 -0.001 0.767 0.006 -0.001

situation (SFS): (0.004) (0.005)

comfortable or OK

SFS: just about getting 0.182  -0.005 -0.002 0.189 -0.002 0.001

by (0.004) (0.005)

SFS: finding it 0.062 -0.004 0.003 0.044 -0.004 -0.001

quite/very difficult (0.002) (0.002)

Employed? 0.607 -0.009 -0.001 0.601 -0.010 0.001
(0.004) (0.006)

Behind with some orall 0.073 -0.006 -0.001 0.048 -0.006 -0.004

bills (0.002) (0.003)

Behind with housing 0.065 -0.004 0.002 0.089 0.001 -0.001

payments (0.002) (0.005)

HH type: Couple with 0.203 -0.005 -0.007 0.179 -0.002 -0.009

children (0.004) (0.004)

HH type: Single, no 0.121  -0.002 0.002 0.119 -0.006 0.001

children (0.003) (0.004)

Covid test? 0.040 0.000 -0.001 0.226 -0.001  -0.017*
(0.002) (0.005)

Clinically vulnerable 0.389 0.007 0.013* 0.427 0.010 0.006
(0.004) (0.006)

Not in IPW model:

Advised to shield 0.068 0.002 0.003 0.069 -0.000 0.001
(0.002) (0.003)

Gave or received 0.151 0.002 0.001 0.116 -0.001 0.000

money (0.003) (0.004)

Less sleep than usual 0.218 -0.003 -0.000 0.181 -0.006 -0.009
(0.004) (0.005)

More depressed than 0.286  -0.001 0.002 0.232 -0.005 -0.006

usual (0.004) (0.005)

More lonely than usual 0.086  -0.000 -0.001 0.079 -0.003 -0.004
(0.003) (0.003)
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Table 6:

IP-NR SS SIP-NR

Type Wave Trimmed DEFF Trimmed DEFF Trimmed DEFF
(Prop.) (E.D.Size)  (Prop.) (E.D.Size) (Prop.) (E.D. Size)

Cross- 2 26 2.779 32 3.047 27 2.726

sectional (0.0022) (4333) (0.0023) (4623) (0.018) (5433)

5 27 2.932 35 3.209 26 2.802

(0.0025) (3621) (0.0028) (3843) (0.0020) (4595)

8 18 2.777 25 3.083 26 2.763

(0.0017) (3822) (0.0021) (3934) (0.0021) (4639)

Longitudinal 2 28 2.968 40 3.225 29 2.902

(0.0025) (3780) (0.0031) (4064) (0.0021) (4720)

5 23 2.988 33 3.301 19 2.847

(0.0026) (2964) (0.0032) (3091) (0.0018) (3702)

8 18 2.932 25 3.189 17 2.873

(0.0025)  (2498)  (0.0030)  (2614)  (0.0020)  (2983)
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Figure 1: A graphical representation of cluster definition in the two new weight sharing
procedures. w(y), W(z), W(3), W) and ws) are existing (selection or IP-NR) weights
ordered according to size (x-axis). W(q), W), W3y and W are similarly ordered
synthetic weights. Three clusters of existing and synthetic weights are depicted that
show the different ways in which clusters may be defined. Cluster 1 consists of the
synthetic weight w4y and two existing weights that are closest to it, w(qy and w,),
which are of the same size. If instead w(;) < w(y), then this cluster would be formed
of W(1y and w(, only. Cluster 2 consists of the synthetic weight W,y and the existing
weight w,, which is same distance away from W,y as w(s (i.e. a = b where
a= Wgy— wyandb = wg) — W), butis the larger of the two mentioned existing
weights. Cluster 3 consists of the synthetic weights W3y and W, and the existing
weight w(s), which is the closest existing weight to both the mentioned synthetic

weights. See main text for further explanation.

Figure 2: Box plots of absolute values of the tests of COVID-19 Study weights reported
in Table 4, standardised by benchmark estimate standard deviations. In a), tests
compare wave 2 cross-sectional dataset IP-NR (white bars) and SS (light grey bars)
weighted estimates of main survey measured characteristics to main survey weighted
benchmarks. In b), tests compare wave 8 longitudinal dataset IP-NR (white bars) and
SS (light grey bars) weighted estimates of main survey measured characteristics to
main survey weighted benchmarks. In plots, bars indicate the inter-quartile range, the
line within the median value, and the cross the mean value. Whiskers indicate
minimum / maximum values, unless values exist that are smaller or larger than the
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inter-quartile range, in which case they indicate the smallest / largest value within this

range, and the outlying values are indicated by circles.

Figure 3: Box plots of absolute values of the tests of COVID-19 Study weights reported
in Table 5, standardised by benchmark estimate standard deviations. In a), tests
compare wave 2 cross-sectional dataset SS (light grey bars) and SIP-NR (dark grey bars)
weighted estimates of COVID-19 Study measured characteristics to COVID-19 Study
IP-NR weighted benchmarks. In b), tests compare wave 8 longitudinal dataset SS and
SIP-NR weighted estimates of COVID-19 Study measured characteristics to COVID-19
Study IP-NR weighted benchmarks. In plots, bars indicate the inter-quartile range, the
line within the median value, and the cross the mean value. Whiskers indicate
minimum / maximum values, unless values exist that are smaller or larger than the
inter-quartile range, in which case they indicate the smallest / largest value within this

range, and the outlying values are indicated by circles.
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Fig. 3
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Supplementary Information for ‘Two new solutions to the zero non-response

weight problem’ by J.C. Moore and P.S. Clarke

Appendix A

Lasso variable selection methods: details and use

Lasso procedures are regularised regression methods. As with other regularised
regression methods, they minimise the sum of squared deviations between predicted
and observed values similar to Ordinary Least Squares (OLS), but in addition impose a
regularisation penalty on model complexity (Ahrens et al. 2020). Due to the
imposition of this penalty, such methods tend to outperform OLS in terms of out of
sample prediction, as reducing model complexity and inducing shrinkage bias
decreases prediction error. In doing so, they also address the problem of model

overfitting: high in-sample fit, but poor prediction performance on unseen data.

Regularised regression methods incorporate tuning parameters that
determine the amount and form of regularisation penalty. With Lasso procedures
(Tibshirani 1996; Steyerberg et al. 2001), the mean squared error is minimised subject

to a penalty on the absolute size of coefficient estimates:
5 .1 , yl
Blasso() = arg min =3, (v;=x;B)* + ~X7_, ¥; |Bj], (1)

where f4550(1) are the Lasso estimated coefficients for each predictor in the
considered set p given the tuning parameter A that determines the overall penalty
level, n is sample size, y; is the value of the response variable for subject i = 1,..n, x|

are the values of the predictors for the same subjects, f are the OLS estimated
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coefficients for the predictors, and 1;are (given ) predictor-specific penalty loadings.
A A of zero results in the OLS model. Increasing A ultimately results in an empty model,
with all coefficients set to zero. It is this setting of some coefficients to zero and
removal of predictors from models that enables Lasso to be used as a model selection
technique. Note that in this paper we assume that predictors are uncorrelated and
hence that Lasso-type penalisation is all that is necessary, enabling us (after
standardising predictors so that they have equal variances) to set ¥; all to unity: for
methods suitable when this assumption is relaxed, see Zhou & Hastie (2005) & Ahrens

et al. (2020).

Several techniques exist to choose the value of the tuning parameter A. The
first of these is cross-validation, which explicitly evaluates out of sample prediction
performance. The data in question are split into training and validation datasets. The
models for different values of A are then estimated and variables selected using the
training dataset. Next, they are fitted to the validation dataset, and mean squared
prediction errors calculated to quantify performance (Ahrens et al. 2020). For
example, with the commonly used K-fold cross-validation technique datasets are split
into K groups of approximately equal size (Geisser 1975). One group is treated as the
validation dataset, and the others combined as the training dataset. Then, for each
value of A4, models are identified and their performance quantified multiple times in a

process that involves each data point being used for validation once.

The second technique is the use of information criteria. Information criteria
are closely related to regularised regression methods, being interpretable as

likelihood methods that penalise the number of parameters in models. Again, models
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for different A are estimated and variables selected, then the best performing is
chosen based on information criteria value. The Akaike Information Criterion (Akaike
1974) or the Bayesian Information Criterion (Schwarz 1978) may be used, along with
their extensions (for small n / high p relative to n) the corrected AIC (AIC.: Sugiura

1978) and the Extended BIC (EBIC: Chen & Chen 2008).

When producing the inverse propensity weights released with the UKHLS
Covid-19 Study and in the main text of this paper, we use information criteria
techniques to choose values of A and identify models for estimating subject response
probabilities. Specifically, we utilise the EBIC (in the Stata 16 package ‘lassologit’: see

Ahrens et al. 2020), which is:

EBIC:(2) = nlog(6%(1)) + df (1) log(n) + 2&df (2) log(p), (2)

where 62(1) =n —1 Y, e and ¢; are the residuals. df is the effective degrees of
freedom, the penalisation parameter common to all information criteria, and in this
case is quantified as the number of coefficients estimated to be non-zero. é[0,1] is a
second penalisation parameter included in the EBIC to prevent over-selection of

variables when p is relatively large, and is quantified as:

§=1-1log(n)/(2log(p)) (3)

We ultimately utilise EBIC techniques because in simulations Ahrens et al. (2020) show
that in the majority of scenarios they perform best out of those mentioned earlier (all
of which are available in the ‘lassologit’ package and its sister package ‘lassopack’: see
Ahrens et al. 2020) in terms of model identification, that is, in terms of lowest rates of

false positives (identifying predictors not correlated with the response variable) and
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false negatives (not identifying actual correlates of the response variable). We note
though, that some of the findings replicate earlier work: see, for example, Chen &
Chen (2008) for simulations showing that the EBIC performs better than the BIC.
Moreover, there are theoretical reasons why such findings might be expected. First,
supporting their use for model identification, BIC techniques are the only ones of
those tested that are model consistent, that is, will select the ‘true’ model (if in the
potential set) with a probability nearing one as sample size tends to infinity (Yang
2005; Zhang et al. 2010). Second, when model identification is the goal, theory
indicates that cross-validation training datasets should be small and validation
datasets should be close to n, because more data are required to identify the correct
model than to reduce bias and variance (Yang 2006). This does not occur with the K-
fold cross-validation technique included in ‘lassopack’ (and in most other Lasso
software packages: see, for example, StataCorp 2017), with which the training dataset
is ~ n/K (see earlier). We note here that given this, intuitively at least the relatively
small size of most survey datasets may preclude the use of more appropriate cross-
validation techniques for identifying response probability models anyway: a
sufficiently large evaluation dataset may lead to too small a training dataset for initial

model selection to reliably take place.

As mentioned in the second paragraph of this section, for the above
techniques to be used as described predictors must first be standardised so that they
have unit variance. Hence, when modelling Covid-19 Study response probabilities we
first converted all multi-category predictors and interactions into dummy variables.

We also set up models so that the predictors ‘Gender’, ‘Age’ and ‘Education’ and their
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interactions could not be removed during Lasso procedures, and included in the final
selected predictor sets all dummy variables associated with Lasso-selected predictors:
this approach reduced biases in weighted estimates compared to main survey wave
10 values (unpublished results). After model identification, we utilised post-Lasso OLS
estimation to estimate subject response probabilities for weight calculation. This is
because Lasso estimated coefficients are subject to attenuation bias (Ahrens et al.
2020). We fitted probit models including the Lasso-selected predictors, then
computed estimated response probabilities using model coefficients and subject

characteristics.
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Appendix B

We now sketch a framework in which the combined sampling design of UKHLS and its
Covid-19 Study sits and use this to set out the conditions under which the SS and SIP-

NR procedures we propose will give us valid first-order inference.

The structure is as follows:

e Appendix B.1 sets up notation and uses it to describe the changing
population;

o Appendix B.2 describe the UKHLS main survey sample as a bipartite incidence
graph sampling (BIGS) scheme.

o Appendix B.3 reviews the pragmatic assumptions made for UKHLS when
making inference.

o Appendix B.4 finally comes to the Covid-19 Study and sets out the conditions
under which the SS and SIP-NR procedures described by Moore and Clarke
(2024, sec. 3) can be used to make valid inferences about the population at
the time of the Covid-19 Study.

It should be noted that the development represents a simplification of the UKHLS and

UKLS Covid-19 Study designs but these simplifications do not undermine the results.

B.1 BIGS Notation and Change in UKHLS Target Population

We take the UKHLS main survey at Waves 9 to be obtained by direct and indirect
sampling (Lavallee 2007). This means it can also be characterized as a special case of

Bipartite Incidence Graph Sampling (BIGS) scheme (e.g. Zhang 2022; Zhang and Patone
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2017). Within the BIGS framework, the target population is characterised by B =
{F,Q,H} where, in our case, F is the primary (directly sampled) population, Q is the
secondary (indirectly sampled) population, and (ix) € H is the set of structural links
in the population between pair i € F and k € Q such that the direct selection of i

leads to forward/indirect selection of k if (and only if) (ix) € H, else (ik) & H.

To characterise the clusters formed by the links in 7, define also the set a(i) =
{x: (ix) € H} of individuals who would be indirectly selected were i € F selected into
the sample, and the set B (k) = {i: (ix) € H} of those in F who, if directly selected,
induce the inclusion of k € Q in the sample. The number of units in these sets is

denoted by |a(i)| and |B(k)|, respectively.

But before framing our sampling design as a BIGS scheme, we describe the evolution
of the population between UKHLS Wave 1 (incorporating the Ethnic Minority Boost

Sample) and the time of the Covid-19 Study

Let P° be the UK population at UKHLS Wave 1 or baseline t = 0. The available
Postcode Address File (PAF) determines the partition P° = 7° U T7°, where T° is the
subpopulation with non-zero selection probabilities and T° the left-out individuals

whose selection probabilities are zero.

Now let P! be the population at Wave 6 the time of the Immigrant and Ethnic Minority
Boost (IEMB) sample. The available PAF at Wave 6 and focus on areas of high minority
ethnic densities allows us to modify the partition to be P! = 71 U T where (ignoring

survival for now) 71 includes 7°° and all those whose selection probabilities are now
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non-zero as a result of the IEMB design; likewise, 7! includes those people in 7° and

those population newcomers N'! whose selection probabilities remain non-zero.

Note that all population sets are taken to include both eligible and ineligible
individuals: it is assumed that the focus on eligible individuals will be done by the
analyst through sample exclusions or zero weights. The weight construction Moore

and Clarke (2024), for example, includes only eligible adults.

Now denote the time of Wave 9 as t = 2 (to simplify without loss of generality, we
ignore that Wave 8 respondents who did not respond at Wave 9 were also included).
The waves are combined without affecting the subsequent arguments. The cross-

sectional population can be written

P2=T'QUT'RQ)UN? (A1)

where T1(2) and T1(2) are the ‘survivors’ from 7' and 7! present at t = 2,
respectively, and V"2 is the population of newcomers present at t = 2 who were not
present at t = 1. A survivor is taken to be someone who does not die or does not

leave the UK.

Finally, denote the time of the Covid-19 Study by t = 3. Dropping the superscripts

and subscripts for quantities related to t = 3, the cross-sectional population is

P=TIB)UTIB)UNZB)UN, (A.2)

where 71(3), 71(3) and N'2(3) are survivors present at t =3, and N is the

population of newcomers present at t = 3 not presentatt = 2.
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B.2 UKHS Wave 9 as a BIGS Sample

We begin by formulating UKHLS Wave 9 (t = 2) as BIGS design B = {F,Q, '} and

relate its components to the target population.

A. F comprises everyone in 7! who survived and subsequently complied with
UKHLS such that their survey weights are available at t = 2 or would have

counterfactually complied had they been selected instead.

B. Q comprises everyone in 7! who survived but have no survey weight
available at t = 2 because they did not comply with UKHLS or would have
counterfactually non-complied had they been selected instead. Furthermore,
it includes those individuals in 71(2) U V2 who are now part of households

containing individuals in 7! according to the PAF.

C. H contains the links induced by the household structure at t = 2 between
i €EFandk € (.
The target population is straightforwardly F U (0 € P. This excludes those individuals

in 71(2) U 2 not in households containing individuals in 1.

Now the sample can be defined as follows:

D. s c F contains the (directly sampled) individuals with survey weights

available for analysis.
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E. Qg < Q contains is the corresponding sample of (indirectly sampled)

individuals without survey weights available.

F. H, c H is the set of links between sample members in s and those in ().
Finally, note from section 2.4 that s U ), for UKHLS also excludes (i) OSMs with
incomplete wave response, (ii) PSMs, and (iii) non-(minority) ethnic TSMs from the
IEMB sample if they are not resident in HHs containing a weight to be shared, despite

being in H; € H. These individuals will figure in appendix A.4 if they survive.

B.3 Shared Weight Estimation

Before moving on to set up the SS and SIP-NR procedures introduced by Moore and
Clarke (2024), we review the implicit assumptions behind the use of the main survey

weights for analysing survey variable(s) Y at t = 2.

Letting random variable S; indicate whether unit i € F appears in s, design-
based/finite-population inference about the population total T, = Y\icr Vi + 2xeq Vi
for any survey variable Y can be based on

t, = z wyiS; + z Wi VS, (A.3)

IEF KEQ

where w; is the survey weight for unit i and, for unit k, indirect selection indicator

Sk = 2iego) Si/|B ()| and shared weight w, = Yiepa0 Wi/ B ()]

Similarly, for model-based super-population inference, let gbj(Yj;H) be the score

function based on the statistical model chosen by the analyst. The score is taken to
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satisfy E{y;(¥;;6)} = 0 where 6 is the true parameter value and expectation is with
respect to the true infinite-population model. Without loss of generality, we focus on
the target population’s mean 0 = u, = E(Y]) based on the simplest possible score
t,bj(Yj;yz) =Y, — up. The pseudolikelihood estimator fi for u, is then chosen such
that

Dw(-)+ ) w - =0 (A4

iES KEQ

Both (A.3) and (A.4) will be unbiased for respective parameters T, and u, if the true
survey weights are available for analysis (generally, only consistency holds but is
unbiased for scores linear in parameters). The pragmatic approach to variance

estimation for (A.3) and (A.4) is based on the following assumption:

Assumption A.1: Survey weights w; treated as known rather than estimated

quantities and the shared weights w,, can be treated as survey weights.

The general form of variance estimator for (A.3) is complex and beyond the scope of
this paper even under Assumption A.1. However, some modification to the form of

(A.3) and (A.4) in terms of clusters can be used to simplify calculations as follows:
Clusters partition the population F U Q indexed by ¢ € {1, ..., C} defined as follows:

Definition A.1: The target population can be partitioned into C clusters F U
Q = ngl Y such that cluster ¢ contains a) all i satisfying a(i) = a,, and b)
all k satisfying B(k) =B; and Y. =a., UL, ={i€eF:a(i)=a}U{k €
Q:p(k) = B}

Now, for example, (A.3) can be rewritten in terms of clusters as
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C Cc
tglus :Z Sc We zyi+ Z Vi :Z Sczijj*' (A.5)
c=1 c=1

i€B. KEa, JEYc

where random variable S, indicates whether cluster c is selected, w;' = w, if j € y,
and w, = 1/m, is the weight based on the selection probability 7, = Pr(S, = 1) for
direct selection (and response) of the units in B, (a short discussion of how it is

calculated is given below).

The variance formula can then be based on the design D induced by the UKHLS
sampling design (incorporating the main and boost surveys) with the subsequent
response process treated as additional stages of selection with known selection

probabilities. Model-based inference can be based on the linearized estimator.

However, the challenge for analysts is that, strictly speaking, they need to derive and
calculate m.. The simplest approach to this is to assume that households remain intact
and linked to the PAF addresses in which case m. can be based on the original

household selection and household non-response probabilities.

B.4  Covid-19 Study Inference

The population P att = 3 (the time of the Covid-19 Study) is defined in (A. 2). Sample
selection involves inviting each i € s and k € (), to participate online at each wave.
The additional complication comes from the appearance of unweighted ‘left-out’
individuals | € s U Q) in the Covid-19 sample. Despite knowing that these new
individuals were at some point members of HHs containing UKHLS members, no

information on HH membership is available for them because no attempt was made
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to create H at t = 3. Hence, in contrast to appendix A.2, inference cannot be based

on the theoretical results of indirect sampling or BIGS sampling.

Instead, we propose a matching estimators based on an exchangeability assumption
to be set out below. Let s* denote the set of extra-sample linked individuals. Each

[ € s* c L falls into one of the following three categories:

1. Individuals in Q but not {1, who are now included by virtue of being members
of households containing at least one Covid-19 respondent from s U ().

2. Individuals in F but not s who are now included by virtue of being members
of households containing at least one Covid-19 respondent from s U ().

3. Surviving left-out individuals and newcomers £ € T1(3) U N2(3) U IV (from
(A.2)) who are included by dint of being members of households containing
at least one Covid-19 respondent in s U Q5. As described at the end of
appendix A.2 for UKHLS, the set of unweighted individuals also includes those
present prior to wave 9 for whom it is not possible to share a weight using
conventional sharing procedures (or for whom it would have counterfactually
not been possible to share a weight).

Note that 1-3 imply that the target population excludes left-out individuals and
newcomers not in L, that is, left-out and newcomer individuals who are not in
households containing at least one Covid-19 respondent from F U Q: the probability

of being included in the Covid-19 Study is zero for these people.

67



Non-response to the Covid-19 Study

All those for whom the contact details were available to UKHLS (even those without
weights and even if details about HH links were not available about them) at the time
of the Covid-19 Study were invited to participate in the Covid-19 Study. The impact of

refusals and no-replies is ignored in the following development.

Subsequently, at the start of each wave of the Covid-19 Study, those who agreed to
participate were sent a request and a link to the online questionnaire. In the following

development, we take the wave in question to be wave 1 without loss of generality.
The response is assumed to satisfy the following assumption:

Assumption A.2 (Missing at Random Questionnaire Non-response): For any
survey variable Y, the probability that individual i € F U QU L fills in the
online questionnaire depends on the survey variables such that
Pr(R; = 1|Y; = y;) > 0 depends non-trivially on y;. However, variables Z can
be found satisfying Pr(Ri = 1|Y} =vy;,Z; = Zl-) = Pr(Rl- = 1|Zi = zj) = p;

exist and are known by and available to the analyst.

Assumption A.2 allows us to estimate the response propensities provided suitable
variables are available. It also takes the response process to be the same across the

three subpopulations F, ) and L.
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The problem

Incorporating [ € s into the estimator requires further assumptions. Consider the
following biased estimator of the population total T = Y.;cr Vi + Xkeq Ve + Qiec Vi
of Covid-19 Study variable Y (note this is different to the Y in appendix A.3 which was
from the main survey):

phiased _ z w;y;S; R; + Z Wi VieSicRye + 2 YiLiRy,

iIEF KEQ leL

where §;, S,., w; and w,. are defined as in (A.3), R;, R, and R; are response indicators
for whether individuals i, k¥ and [, respectively, fill in the questionnaire, and L; =
I(l € s*) indicates whether | € L is selected into the unweighted left-out sample s*

(indicator function I(E) = 1 if event E is true or zero otherwise).

biased

Estimator ¢t is appropriately named because the weights included in it do not

adjust for non-random response to the invitation, and the unweighted sample
individuals require a weight because they were not selected using simple random

sampling.

This motivates the ‘unbiased’ estimators of the form

t= ) YWiSiRi+ ) BWiScRe+ ) Wi LRy (A6)

IEF KEQ leL

for the population total, and estimator /i of u = E(Y) the solution to

Ywih-p)+ Y with—D+ Y G- =0, (A7)

iEs KEQ les*
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where, in section3, w; is referred to as a selection weight, Wj* = wj/pj as an IP-NR

weight, W = w;/p; and W, is an estimator of the unknown true survey weight ;.

An alternative approach can be based on the simultaneous weighting approach
proposed by Robbins et al. (2021, sec. 2.1.2). They suppose sample s U Qg = §; is
drawn from the target population with known probabilities, and s* = S, is drawn from
the same population with unknown probabilities. Their simultaneous propensity

score weight fori € S; U S, is

wi =1 —-y)w/p;, (A.8)

where we set y; =Pr(i € S,|li €S; US,) =0.5. For [ €S, =5s", the selection

weight w; must also be ‘estimated’ as in (A.7).

The SS and SIP-NR procedures are alternative ways of estimating ;.

Matching

Both SS and SIP-NR procedures described in section 3 involve splitting the selection or
IP-NR weight for j € s U, with [ € s*. Splitting the response propensities is
straightforwardly allowed under assumption A.2. However, splitting the selection

weights requires a further assumption.

Assumption A.3 (Exchangeable ignorable selection): The analyst chooses

variables Z such that, forany pairl € Landj € F U Q,if Z; = Z; = z then

pr(Ll = 1|YlIZl = Z) = Pr(Ll = 1|Zl = Z) = PI‘(S] = 1|Z] = Z)

= Pr(s; = 1]Y;,2; = 2)
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That is, had [ € L counterfactually been included in the PAF at Waves 1 or 6, it
would have the same UKHLS compliance behaviour as those actually included

with the same auxiliary variable characterisation.

For example, (A.7) with known weights implies E(j) = u because E{w;(Y; —
1)SR;} = E{w; (Y, — W)ScR,.} = 0, straightforwardly, and

Pr(L, = 1|2)

T ey —uL=12)!=0,
prs, = 1j2) - & M )}

E{w/ (Y, — w)S;R;} = EZ{

where the final equality holds under assumptions A.1, A.2 and A.3 (assumption A.2
implies that the response process is the same for all three subpopulations and

assumption A3 that E(Y; — ul|L; = 1,Z) = E(Y; — ulZ)).

Similar arguments also hold for (A.7) in combination with (A.8) based on the

simultaneous propensity score weights.

Inference

Restricting the discussion to model-based inference based on (A.7) and its
generalisation, arguments given elsewhere (e.g. Chernozhukov et al. 2018, C3-C5) can
be used demonstrate that the use of W; would lead to a small over-estimation of the

standard error of /.

To argue this, it is first necessary to make the further assumption that the matching

estimator is a good predictor in large sample sizes.
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Under assumption A.2, the response propensities p can be estimated from the
available dataon j € s U Q oronj € s U, Us". Treating p; as the true response
probability is well known to over-estimate the standard errors (e.g. discussion of the
‘IPWCC’ estimator by Tsiatis (2006, p.206)) and so is used in practice: conservative

inference is worth the price of simplicity.
Moreover, in terms of the splitting, we require the following assumption to hold:

Assumption 4 (Good estimator): Matching leads to a regular estimator

satisfying
W, = Pr(S; = 1|1Z, = z) + 0,(n"Y/%), (A.9)

wheren = Z]-ESUQS R;and o, (n‘l/z) represents omitted variables converging

to zero at rate Vn.

Setting w; = w;(Z; 1), a Taylor series expansion of Y;(Y;; i,1) = (Y, — Dw(Z; %)
around u and w;(Z;n) =Pr(S; =1|Z) depends on the additional term
n 1Y ow,(Z;n)/on (h —n) if W, is treated as an estimated parameter. If # was
estimated on a completely independent data sample, this additional term would be
op(n‘l/z) too because of (A.9) and so the asymptotic distribution of 4 would be
unaffected. However, we know that 7 is, in effect, estimated from data on donor
individuals known to be clustered with those being donated to. This situation is less
acute than that for p;, which is estimated from exactly the same sample individuals as
those it is used for and, as already discussed, leads to an (in practice acceptable) over-
estimation of the standard errors, but we can expect not accounting for matching-
estimator imprecision to contribute less to standard-error over-estimation.
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Note that the above argument is based on treating of Y (Y; (i, %) as independent and
identically distributed random variables, but the same conclusion follows for inference

based on the design-robust linearized variance estimator.
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Appendix C: Evaluation results.

Table 1: COVID-19 Study wave 5 and wave 8 cross-sectional weight performance in
recovering estimated means of main survey measured characteristics. We present
main survey weighted mean estimates ('wt. est.’; respectively columns (i) & (iv)); tests
of differences between such estimates and estimates given COVID-19 Study IP-NR
weights (columns (ii) & (v)); and tests of differences between such estimates and
estimates given COVID-19 Study SS weights (columns (iii) & (vi)). * equals P<0.05, **

equals P<0.01, *** equals P<0.001.

Table 2: COVID-19 Study wave 5 and wave 8 cross-sectional weight performance in
recovering estimated means of COVID-19 Study wave measured characteristics. We
present COVID-19 Study IP-NR weighted estimated means (‘wt. est.’; respectively
columns (i) & (iv)), tests of differences between such estimates and estimates given
Mod1 weights (‘wt. diff.”; columns (ii) & (v)), and tests of differences between such
estimates and estimates given SIP-NR weights (columns (iii) & (vii)). * equals P<0.05,
** equals P<0.01, *** equals P<0.001. Note that differences exist between the two
sets of main survey weighted estimates are due to a greater number of subject deaths

by wave 8.

Table 3: COVID-19 Study wave 2 and wave 5 longitudinal weight performance in
recovering estimated means of main survey measured characteristics. We present

main survey weighted mean estimates ('wt. est.’; respectively columns (i) & (iv)); tests
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of differences between such estimates and estimates given COVID-19 Study IP-NR
weights (columns (ii) & (v)); and tests of differences between such estimates and
estimates given COVID-19 Study SS weights (columns (iii) & (vi)). * equals P<0.05, **

equals P<0.01, *** equals P<0.001.

Table 4: COVID-19 Study wave 2 and wave 5 longitudinal weight performance in
recovering estimated means of COVID-19 Study wave measured characteristics. We
present COVID-19 Study IP-NR weighted estimated means (‘wt. est.’; respectively
columns (i) & (iv)), tests of differences between such estimates and estimates given
SS weights (‘wt. diff.”; columns (ii) & (v)), and tests of differences between such
estimates and estimates given SIP-NR weights (columns (iii) & (vii)). * equals P<0.05,
** equals P<0.01, *** equals P<0.001. Note that differences exist between the two
sets of main survey weighted estimates are due to a greater number of subject deaths

by wave 5.
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Table 1

Wave 5 cross-sectional

Wave 8 cross-sectional

Main Covid Main Covid
IP-NR SS IP-NR SS
wtest.  wt diff. wt. diff ~ wtest.  wtdiff. wt. diff
(i) (iii) (iii) (iv) (v) (vi)

In IPW model:

Subjective  financial 0.717 -0.002 0.012* 0.716 0.005 0.014**

situation (SFS): (0.003) (0.003)

comfortable or OK

SFS: just about getting  0.203 -0.005  -0.013**  0.203 -0.008  -0.012**

by (0.002) (0.002)

SFS: finding it quite / 0.081 0.007* 0.001 0.081 0.003 -0.002

very difficult (0.002) (0.002)

Tenure: Owned 0.343 0.011*  0.029***  0.343 0.010 0.028***
(0.003) (0.003)

Tenure: Mortgage 0.341 - - 0.341 - -

0.024*** (0.021*** 0.023*** 0.020***

(0.003) (0.003)

Tenure: Rented 0.119 0.000 -0.008* 0.119 0.003 -0.007
(0.002) (0.002)

Tenure: Social 0.195 0.012%* 0.000 0.195 0.009* -0.001

Housing (0.002) (0.002)

Low skill occupation 0.362 0.003 0.001 0.362 0.005 0.002
(0.004) (0.004)

Savings income? 0.372 -0.002 0.012* 0.372 -0.000 0.013*
(0.003) (0.003)

Behind with some or 0.059 0.002 -0.009** 0.059 0.000 -0.008**

all bills (0.001) (0.001)

Not in IPW model:

Income poverty 0.155 0.015*** 0.013**  0.155 0.006 0.004
(0.002) (0.002)

Receives core benefit  0.054 0.001 -0.002 0.054 -0.001 -0.004
(0.001) (0.001)

Visited GP 0.700 -0.005 -0.003 0.700 -0.004 -0.002
(0.003) (0.003)

Smoker 0.144 0.030*** 0.020***  0.144 0.026*** (0.019***
(0.002) (0.002)

Hospital outpatient 0.433 -0.005 0.001 0.433 -0.005 -0.002
(0.003) (0.003)
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Table 2

Wave 5 cross-sectional

Wave 8 cross-sectional

IP-NR SS SIP-NR IP-NR SS SIP-NR
wtest. wt.diff wtdiff. wt.est. wtdiff. wt.diff
(i) (i) (iif) (iv) (v) (vi)

In IPW model:

Subjective  financial 0.752  0.012* -0.001 0.751 0.009 -0.005

situation (SFS): (0.004) (0.004)

comfortable or OK

SFS: just about getting 0.190 -0.008 -0.002 0.194 -0.003 0.003

by (0.004) (0.004)

SFS: finding it 0.058 -0.004 0.003 0.055 -0.005 0.002

quite/very difficult (0.002) (0.002)

Employed? 0.594 -0.011 -0.001 0.600 -0.014* -0.000
(0.005) (0.005)

Behind with some or 0.067 -0.009**  0.003 0.060 -0.006 0.003

all bills (0.002) (0.002)

Behind with housing 0.065 -0.006 0.001 0.076 -0.005 0.002

payments (0.002) (0.004)

HH type: Couple with 0.209 -0.004  -0.011* 0.197 -0.006 -0.009

children (0.004) (0.004)

HH type: Single, no 0.113 -0.003 0.003 0.111 -0.005 0.002

children (0.003) (0.003)

Covid test? 0.124 -0.001 0.001 0.278 -0.002 -0.011
(0.003) (0.004)

Clinically vulnerable 0.415 0.009 0.008 0.436 0.006 0.012
(0.005) (0.005)

Not in IPW model:

Advised to shield 0.072 0.003 0.004 0.088 -0.001 0.003
(0.003) (0.003)

Gave or received 0.119 -0.001 0.001 0.122 0.001 0.004

money (0.003) (0.003)

Less sleep than usual 0.185 -0.001 -0.001 0.200 -0.002 0.002
(0.004) (0.004)

More depressed than 0.221 -0.002 -0.002 0.250 -0.003 -0.000

usual (0.004) (0.004)

More lonely than usual 0.062 -0.005 -0.003 0.082 -0.003 -0.002
(0.002) (0.003)
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Table 3

Wave 2 longitudinal Wave 5 longitudinal
Main Covid Main Covid
IP-NR SS IP-NR SS

wtest.  wt diff. wt. diff wt est. wt diff. wt. diff

(i) (i) (iii) (iv) (v) (vi)

In IPW model:
Subjective  financial 0.716 0.013*  0.023***  0.717 0.000 0.011*

situation (SFS): (0.003) (0.003)

comfortable or OK

SFS: just about getting 0.203  -0.014** - 0.203 -0.011* -

by 0.020%*** 0.017%**
(0.002) (0.002)

SFS: finding it quite / 0.080 0.001 -0.003 0.080 0.010** 0.005

very difficult (0.002) (0.002)

Tenure: Owned 0.344 0.008  0.023***  0.344 -0.002 0.016**
(0.003) (0.003)

Tenure: Mortgage 0.340 - -0.016**  0.340 -0.019** -

0.018*** 0.019***

(0.003) (0.003)

Tenure: Rented 0.119 0.007 -0.002 0.119 0.003 -0.005
(0.002) (0.002)

Tenure: Social 0.195 0.003 -0.005 0.195 0.016*** 0.007

Housing (0.002) (0.002)

Low skill occupation 0.362 -0.002 0.001 0.362 0.013 0.010
(0.004) (0.004)

Savings income? 0.372 -0.001 0.010 0.372 - -0.010

0.021%**

(0.003) (0.003)

Behind with some or 0.059 -0.006* - 0.059 0.002 -0.007**

all bills 0.012%**
(0.001) (0.001)

Not in IPW model:

Income poverty 0.155 0.011** 0.009* 0.155 0.018*** (.018***
(0.002) (0.002)

Receives core benefit  0.054 0.006* 0.005 0.054  0.009** 0.006*
(0.001) (0.001)

Visited GP 0.700 0.003 0.001 0.700 0.002 0.002
(0.003) (0.003)

Smoker 0.144 0.019*** 0.015*** 0.144 0.030*** (0.023***
(0.002) (0.002)

Hospital outpatient 0.433 0.003 0.005 0.433 -0.000 0.002
(0.003) (0.003)
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Table 4:

Wave 2 longitudinal

Wave 5 longitudinal

IP-NR SS SIP-NR IP-NR SS SIP-NR
wtest. wt. diff wtdiff. wt.est. wtdiff. wt. diff
(i) (i) (iif) (iv) (v) (vi)

In IPW model:

Subjective financial 0.744 0.007 -0.003 0.738 0.011 -0.003

situation (SFS): (0.004) (0.005)

comfortable or OK

SFS: just about getting 0.194  -0.005 0.000 0.206 -0.006 0.002

by (0.004) (0.004)

SFS: finding it 0.062 -0.002 0.002 0.056 -0.005 0.001

quite/very difficult (0.002) (0.002)

Employed? 0.608 -0.006 0.005 0.596 -0.008 0.000
(0.005) (0.005)

Behind with someorall 0.088 -0.006 0.003 0.075  -0.009* 0.003

bills (0.003) (0.003)

Behind with housing 0.075  -0.001 0.002 0.068 -0.004 0.001

payments (0.003) (0.003)

HH type: Couple with 0.202 -0.003 -0.012* 0.201 0.001 -0.010

children (0.004) (0.004)

HH type: Single, no 0.117 -0.004 0.003 0.114 -0.005 -0.000

children (0.003) (0.003)

Covid test? 0.041 0.001 -0.000 0.116 0.000 0.000
(0.002) (0.003)

Clinically vulnerable 0.385 0.005 0.006 0.407 0.004 0.004
(0.005) (0.005)

Not in IPW model:

Advised to shield 0.066 0.001 0.002 0.065 0.002 0.003
(0.002) (0.003)

Gave or received 0.153 -0.002 0.003 0.118 -0.004 -0.000

money (0.003) (0.003)

Less sleep than usual 0.216  -0.003 -0.002 0.183 0.000 -0.001
(0.004) (0.004)

More depressed than 0.284  -0.002 0.003 0.220 -0.005 -0.000

usual (0.004) (0.004)

More lonely than usual 0.078  -0.003 -0.002 0.062 -0.005 -0.006
(0.003) (0.003)
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Figure 1: Box plots of absolute values of the tests of COVID-19 Study weights reported
in Appendix Table 1, standardised by benchmark estimate standard deviations. In a),
tests compare wave 5 cross-sectional dataset IP-NR (white bars) and SS (light grey
bars) weighted estimates of main survey measured characteristics to main survey
weighted benchmarks. In b), tests compare wave 8 cross-sectional dataset IP-NR and
SS weighted estimates of main survey measured characteristics to main survey
weighted benchmarks. In plots, bars indicate the inter-quartile range, the line within
the median value, and the cross the mean value. Whiskers indicate minimum /
maximum values, unless values exist that are smaller or larger than the inter-quartile
range, in which case they indicate the smallest / largest value within this range, and

the outlying values are indicated by circles.

Figure 2: Box plots of absolute values of the tests of COVID-19 Study weights reported
in Appendix Table 2, standardised by benchmark estimate standard deviations. In a),
tests compare wave 5 cross-sectional dataset SS (light grey bars) and SIP-NR (dark grey
bars) weighted estimates of COVID-19 Study measured characteristics to COVID-19
Study IP-NR weighted benchmarks. In b), tests compare wave 8 cross-sectional dataset
SS and SIP-NR weighted estimates of COVID-19 Study measured characteristics to
COVID-19 Study IP-NR weighted benchmarks. In plots, bars indicate the inter-quartile
range, the line within the median value, and the cross the mean value. Whiskers
indicate minimum / maximum values, unless values exist that are smaller or larger
than the inter-quartile range, in which case they indicate the smallest / largest value

within this range, and the outlying values are indicated by circles.
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Figure 3: Box plots of absolute values of the tests of COVID-19 Study weights reported
in Appendix Table 3, standardised by benchmark estimate standard deviations. In a),
tests compare wave 2 longitudinal dataset IP-NR (white bars) and SS (light grey bars)
weighted estimates of main survey measured characteristics to main survey weighted
benchmarks. In b), tests compare wave 5 longitudinal dataset IP-NR and SS weighted
estimates of main survey measured characteristics to main survey weighted
benchmarks. In plots, bars indicate the inter-quartile range, the line within the median
value, and the cross the mean value. Whiskers indicate minimum / maximum values,
unless values exist that are smaller or larger than the inter-quartile range, in which
case they indicate the smallest / largest value within this range, and the outlying values

are indicated by circles.

Figure 4: Box plots of absolute values of the tests of COVID-19 Study weights reported
in Appendix Table 4, standardised by benchmark estimate standard deviations. In a),
tests compare wave 2 longitudinal dataset SS (light grey bars) and SIP-NR (dark grey
bars) weighted estimates of COVID-19 Study measured characteristics to COVID-19
Study IP-NR weighted benchmarks. In b), tests compare wave 5 longitudinal dataset
SS and SIP-NR weighted estimates of COVID-19 Study measured characteristics to
COVID-19 Study IP-NR weighted benchmarks. In plots, bars indicate the inter-quartile
range, the line within the median value, and the cross the mean value. Whiskers
indicate minimum / maximum values, unless values exist that are smaller or larger
than the inter-quartile range, in which case they indicate the smallest / largest value

within this range, and the outlying values are indicated by circles.
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Fig 2
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Fig. 3
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Fig. 4
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