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Non-technical summary 

To correct for non-response bias, household (HH) panel surveys release inverse 

propensity non-response (IP-NR) weights that adjust selection weights for non-

response.  However, often some respondents lack selection weights, so cannot be 

assigned IP-NR weights (the ‘zero weights’ problem).  Previous solutions to this issue, 

which reduces weighted dataset quality, have limitations.  Sharing with unweighted 

respondents the existing selection weights of HH members then estimating IP-NR 

weights requires an existing selection weight in the HH.  Predicting selection 

probabilities for such respondents then estimating IP-NR weights is model based, uses 

only responding HH probabilities, and requires assumptions when adjusting for 

multiple HH selection paths.  Hence, two new procedures are introduced.  Both form 

clusters of unweighted and existing weight individuals with similar characteristics, and 

split the existing weights among cluster members.  Split Selection (SS) weighting splits 

selection weights, then re-estimates IP-NR weights.  Split IP-NR (SIP-NR) weighting 

splits estimated IP-NR weights.  Procedure performance is then evaluated, using the 

UK Household Longitudinal Study COVID-19 Study datasets.  Both performed well in 

increasing dataset size and subgroup analysis feasibility, and in reducing non-response 

biases and precision loss: indeed, precision loss was lower with SIP-NR weights than 

IP-NR weights.  The use of these procedures is then discussed. 
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Abstract:  

Household panel surveys release inverse propensity non-response (IP-NR) weights 

that adjust selection weights for non-response.  However, often some respondents 

lack selection weights, so cannot be assigned IP-NR weights.  Previous solutions to this 

issue have limitations.  We introduce two new procedures for weighting unweighted 

individuals.  Both split the existing weights of individuals with unweighted individuals 

with similar characteristics.  We evaluate procedure performance using data from the 

UKHLS COVID-19 Study, and find both perform well in increasing dataset sizes and 

reducing non-response bias and precision loss. We then discuss their broader use in 

survey design. 

 

Keywords: Survey methodology, non-response, non-response weighting, dataset 

quality. 
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1. Introduction 

Reducing non-response bias is a task faced by all survey designers (Groves et al. 2001).  

Bias-reduction measures may be undertaken during data collection, such as ensuring 

the survey sample reflects the study population and obtaining responses from all sub-

groups (‘bias prevention measures’: Groves & Heeringa 2006; Wagner 2008). They 

may also be undertaken post data collection (‘bias-adjustment measures’), of which 

the most common is the supply of non-response weights that map respondents to 

study populations (Valliant & Dever 2013; see Little & Rubin 2014 for alternative 

methods).  

If non-respondent information exists for probability surveys, Inverse 

Propensity Non-Response (IP-NR) weights are normally supplied.  These adjust 

selection weights (the inverse of the selection probability) for the inverse of the 

probability of responding following selection, that is, IP-NR weight = selection weight 

× NR weight.  They perform better in terms of bias reduction and precision loss 

(unequal weights over-inflate estimate variances: Little & Vartivarian 2005) than, for 

example, weights that calibrate respondents to population totals (e.g. Moore et al. 

2024).  The use of IP-NR weights, however, is not without its issues.  One is that, in 

household (HH) panel surveys, it may not be possible to weight all respondents 

(Schonlau et al. 2013), which is termed in this paper the ‘zero weights problem’.  Data 

from these surveys are often re-purposed by supplying weights enabling cross-

sectional analyses. However, sample members are selected within HHs, with selection 

probabilities derived from HH values, so such weights cannot be assigned to new HH 

entrants or when HHs split: the selection probabilities would need adjusting given 
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previous HH membership due to multiple selection paths. In addition, longitudinal 

adjustments for non-enumeration in items detailing HH characteristics may be made 

to individual selection weights (e.g. University of Essex & Institute for Social and 

Economic Research 2019), meaning that those not enumerated at all previous waves 

cannot be weighted (see also section 2.4).     

Numbers of non-IP-NR weighted respondents can be substantial, for example, 

28% in the 2009 wave of the Panel Study of Income Dynamics (Heeringa et al. 2011).  

This decreases weighted dataset quality as smaller datasets have larger sampling 

errors, make accurate sub-group analyses less feasible and, if they reflect study 

populations less well, can lead to increased non-response bias and precision loss after 

weighting (Schouten et al. 2016; Moore et al. 2024).  Moreover, interviews avoidably 

excluded from datasets raise concerns given the costs for survey organizations and 

participants of collecting data.   

Solutions to the zero-weight problem which permit survey estimation are used 

by established surveys (Schonlau et al. 2013).  The first is HH weight sharing (Ernst 

1989; Lavallée 1995; Heeringa et al 2011; Taylor et al. 2018; University of Essex & 

Institute for Social and Economic Research 2019).  With this method, original sample 

members with (existing) selection weights share them with unweighted respondents 

in the same HH.  Movers with existing weights retain them to share with others in their 

new HHs. Then, IP-NR weights are estimated for the larger dataset using the shared 

selection weights as inputs.  The second is selection probability prediction (Haisken-

Denew & Frick 2005; Watson 2012).  With this method, wave 1 HH selection 

probabilities are predicted for unweighted respondents after modelling existing 
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values using survey information. These probabilities are then used to adjust current 

wave equivalents for multiple selection paths, individual probabilities/weights derived 

from them, and IP-NR weights are estimated for the larger dataset using the new 

selection weights as inputs.  However, beyond requiring HH membership information 

to collected, both methods have limitations. HH weight sharing produces unbiased 

estimates (see also Lavallée 2007; Zhang 2021) but requires an existing weight in the 

HH to share, so respondents not in such HHs remain unweighted (for example, 16% in 

the 2008 wave of the British Household Panel Survey: University of Essex & Institute 

for Social and Economic Research 2023).  Selection probability prediction weights all 

respondents, but is model based with predictions made using only responding HH 

probabilities, and adjustments for multiple selection paths involve assumptions.   

These limitations are a major drawback for the survey we focus on in this 

paper, namely, the COVID-19 Study carried out as part of the UK Household 

Longitudinal Survey (UKHLS).  The UKHLS is an annual, multi-mode, multi-domain HH 

panel survey of people living in the UK. It is based on probability sampling and users 

are supplied with IP-NR weights which can be used to make high-quality population 

inferences (Benzeval et al. 2020). Consequently, the UKHLS is widely used by decision-

makers and researchers. During the COVID-19 pandemic, the team also fielded the 

UKHLS COVID-19 Study, a series of surveys that captured information from main 

survey participants more frequently.  For full details, see section 2.2 and the Study 

User Guide (Institute for Social and Economic Research 2021) and website: 

https://www.understandingsociety.ac.uk/topic/covid-19. 

https://www.understandingsociety.ac.uk/topic/covid-19
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The UKHLS team also supply IP-NR weights mapping COVID-19 Study 

respondent sample to the UK population (see section 2.3).  The Study sample was 

those enumerated in HHs participating at either waves eight or nine at that time or in 

the time up to Study inception (i.e. at wave 10 / or in the early parts of wave 11 data 

collection) for whom email contact details existed).  The IP-NR weights adjust the main 

survey non-response weights (in effect, the COVID-19 Study selection weights) for 

these individuals for (COVID-19) Study non-response (Moore et al. 2024).  However, 

depending on the survey wave, between 15-25% of Study respondents are not IP-NR 

weighted because they lack main survey weight inputs (see sections 2.3 and 5.1).  Both 

cross-sectional and longitudinal Study weights are affected, as with the latter only 

response to the Study was considered.  Moreover, existing solutions to the zero-

weight problem are not useful.  Neither HH weight sharing nor selection probability 

prediction is possible because HH structure was not enumerated in the COVID-19 

Study (it is not formally a HH panel survey like the main survey), and HH information 

from the main survey cannot be used instead because some was two or more years 

out of date when the pandemic started.  It should also be noted that no alternative 

natural links exist between weighted and unweighted respondents, so other methods 

similar to HH weight sharing that utilise such links, collectively known as indirect 

sampling methods (see Lavallée 2007; Zhang 2021 for details), cannot be employed 

either.     

In this paper, two new procedures that address the zero weights problem are 

outlined. Both are based on forming ‘matching-clusters’ of unweighted and existing 

weight individuals with similar characteristics, and splitting the existing weights 
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among cluster members. The first, Split Selection (SS) weighting, splits original sample 

member (existing) selection weights, then estimates the survey wave IP-NR weights.  

The second, Split IP-NR (SIP-NR) weighting, splits survey wave IP-NR weights estimated 

for those with existing selection weights. Then, procedure performance is evaluated, 

using the COVID-19 Study datasets. The sizes of datasets weighted by each procedure 

are reported, along with the characteristics of included respondents, to enable sub-

group analysis feasibility to be studied.  In addition, non-response bias reduction and 

precision loss due to weighting is quantified.   

The paper proceeds as follows. In section 2, the two UKHLS surveys and 

existing weighting procedures are described. In section 3, the two new procedures are 

detailed.  In section 4, methods used to evaluate procedure performance are outlined. 

In section 5, evaluation results are reported.  In section 6 the implications of our 

research for the COVID-19 Study and survey design in general are discussed.    

 

2. Considered surveys 

2.1. Understanding Society: The UK Household Longitudinal Study (UKHLS) 

The UKHLS main survey annually follows - up a sample of people living in the UK 

(Institute for Social and Economic Research 2022). Interviews are sought from all 

adults in participating HHs. The survey began in 2009, and includes respondents from 

the preceding British Household Panel Survey, which began in 1991.  It has a sequential 

mixed-mode design: some sample members are allocated to web and others to face-

to-face interview, with follow up in other modes.  Its sample is constructed from 
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probability samples, with non-response carefully modelled (Lynn & Kaminska 2010; 

Lynn et al. 2012).  Research shows that the survey continues to support valid 

population inference (Benzeval et al. 2020).  

 

2.2. UKHLS COVID-19 Study 

The UKHLS main survey is not set up to provide information at pace, so when the 

COVID-19 pandemic began a more frequent web survey was fielded to record how it 

and associated policy responses were affecting respondents. The COVID-19 Study 

sample was all adults (16+) in HHs responding at main survey Waves 8 or 9, who had 

not dropped out, died or emigrated as of April 2020.  Wave 1 of the Study was fielded 

in April 2020, with eight further surveys undertaken (some non-respondents were also 

followed up by telephone, but the focus here is on web respondents: see University of 

Essex & Institute of Social and Economic Research 2021 for full details of the COVID-

19 Study).   

 

2.3. COVID-19 Study IP-NR weight construction 

In the December 2021, IP-NR weights were released which map COVID-19 Study 

respondents to the UK population at the time of main survey wave 10 (2019-20), 

updated for mortality and emigration but not immigration.  Cross-sectional forms are 

the product of respondents main survey wave 10 cross-sectional non-response 

weights and the inverses of their estimated probabilities of responding to the Study 

wave; the longitudinal forms are the product of a chain of weights derived given the 

probability of wave 1 response conditional on possessing the main survey weight, of 
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wave 2 response conditional on wave 1 response, and so on.  The main survey wave 

10 weight was used as the selection weight (before, the wave 9 weight was used) as 

data collection was almost complete in March 2020 and more of the Study sample 

possessed it. IP-NR weighting depends on possessing this weight, so its derivation (and 

who does not possess it) is detailed in section 2.4.   

Regression was used to estimate response propensities, with main-survey 

wave 10 predictors for cross-sectional weights and first weights in the longitudinal 

chains.  For later weights in longitudinal chains, some predictors were replaced with 

the same variables from the COVID-19 Study because only previous wave information 

was needed.  Predictors included demographics, HH structure, economic, health and 

survey design variables.  If many predictors exist, model overfitting can occur (Harrell 

2001; Burnham & Anderson 2002), causing precision loss, so they were selected using 

logistic regression with a Least Absolute Shrinkage and Selection Operator (Lasso) 

procedure (in the Stata package ‘lassopack’: Ahrens et al. 2020), which excludes 

variables by shrinking unstable coefficient estimates towards zero without the need 

for statistical tests (Tibshirani 1996; Steyerberg et al. 2001). See the Appendix for more 

details of these procedures.  Finally, weights were trimmed to restrict precision loss 

(see Valliant & Dever 2018): values more than 25 times the median were replaced with 

the threshold value, which limited precision loss to acceptable levels while still 

reducing biases (Moore et al. 2024).  
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2.4. UKHLS main survey cross-sectional non-response weight construction 

The main survey weight acting as the selection weight in COVID-19 Study IP-NR weight 

construction is the wave 10 cross-sectional non-response weight.  This weight is the 

wave 10 cross-sectional enumerated sample member weight, adjusted for non-

response after modelling wave 10 response using HH questionnaire predictors.  The 

wave 10 cross-sectional enumerated sample member weight is the wave 10 

longitudinal enumerated sample member weight shared with (some) HH members 

(see next paragraph).  The wave 10 longitudinal enumerated sample member weight 

its previous wave value, adjusted after modelling (non-) enumeration in the wave 10 

HH questionnaire, using predictors from the similar wave 9 questionnaire. The waves 

7-9 equivalents are computed similarly, as is the wave 6 weight, except the input is 

the wave 6 inclusion weight, which combines an inclusion weight for refreshment 

sample members entering the survey at the wave with the wave 6 longitudinal 

enumeration weight computed as outlined above for others enumerated at the wave, 

The waves 3-5 longitudinal enumeration weights are also computed as above, as is the 

wave 2 weight, except the input is the wave 2 inclusion weight, the inverse of sample 

member selection probability.  For the derivation of these latter probabilities, see 

University of Essex & Institute for Social and Economic Research (2019).  

HH weight shared cross-sectional enumeration weights are used as selection 

weights when estimating the cross-sectional non-response weights because weighted 

dataset sizes are larger than when their longitudinal counterparts are used.  New 

entrants to original sample member (OSM) HHs (temporary sample members: TSMs) 

lack longitudinal enumeration weights, preventing non-response weight estimation.  

So do children born to OSM mothers or non-OSM fathers (permanent sample 
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members: PSMs),, OSMs who move from sample HHs,  and OSMs in HHs not 

enumerated at one or more previous waves. HH weight sharing provides enumeration 

weights and enables non-response weight estimation for some of these individuals by, 

in HHs in which only some members have longitudinal weights, instead assigning all 

HH members as their weight an equal share of the existing longitudinal weight HH 

sum.   In addition, newborns are assigned their mother’s longitudinal weight, and, if 

they possess them, OSMs who move to new HHs take their longitudinal weight with 

them (to share with other HH members). It should be noted though, that these 

methods do not enable non-response weights to be estimated for all respondents.  

Those in HHs not enumerated at all waves remain without enumeration weights and 

cannot be weighted.  

  

3. Procedures to weight to non-IP-NR weighted COVID-19 Study respondents  

Our two new procedures address the problem of weighting the zero-weight 

individuals mentioned at the end of the last section who remain without non-response 

weights after IPNR weighting and HH weight sharing has been undertaken.  Without 

loss of generality, particular attention is paid to weighting these individuals in the 

UKHLS COVID-19 Study.  In the Study  (see also Introduction), they are joined in the 

sample by other similarly unweighted individuals such as those enumerated in main 

survey wave 8 / 9 HHs at wave 10 or during the early part of wave 11 data collection, 

and some TSMs and PSMs, who are not provided with main survey weights due to 

UKHLS sample considerations. Together, this group provides 15-25% of Study 

respondents.  Neither (further) HH weight sharing nor selection probability prediction 
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can be used to provide weights for individuals in this group because HH membership 

was not enumerated in the Study and similar information from the main survey can 

be two or more years out of date.  In addition, no alternative natural links exist 

between them and weighted individuals. so other indirect sampling methods cannot 

be used.   

Both procedures involve forming matched-clusters, that is, clusters formed by 

matching weighted and unweighted respondents with similar characteristics, and then 

splitting the matched weights between the cluster members (the term ‘splitting’ is 

used to distinguish these procedures from weight sharing methods).  As explained 

earlier, the ‘selection’ weights used in COVID-19 Study IP-NR weight estimation are 

the non-response weights for respondents to wave 10 of the main survey.  The sample 

of individuals with these weights can be viewed as arising from an indirect sampling 

scheme (Lavallee 2007) or, more generally, a bipartite incidence graph sampling (BIGS) 

scheme  (Zhang and Patone 2017; Zhang 2022). However, the final Study sample is not 

BIGS because it also includes individuals for whom information on links with existing 

HHs is unavailable (who hence would not be weightable). 

Informally, let 𝑗 index the sample individuals with selection weights, and 𝑙 

index hose left-out individuals without weights. The task our procedures perform is to 

calculate the COVID-19 Study weights (for a given Study wave taken to be wave 1 

without loss of generality).  These are 𝑤𝑗 𝜌𝑗⁄  and 𝑤𝑙 𝜌𝑙⁄ , where 𝑤𝑗 is the available 

selection weight, 𝑤𝑙 is an the unknown selection weight to estimated by splitting the 

𝑤𝑗, and 𝜌𝑗 and 𝜌𝑙  are response propensities to be estimated using suitable regression 
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model common to both groups.  The two procedures are alternative ways of 

estimating the Study non-response weights. 

An informal framework within which we set out the assumptions under which 

our procedures lead to valid inference is set out in Appendix A.2. In summary, we show 

that our procedures can be used to obtain moderately conservative and design-

consistent inference provided the analyst is able to choose a selection of variables 𝑍 

where a) exchangeability holds: that is, for unit 𝑙 with 𝑍𝑙 = 𝑧, we can find at least one 

𝑗 with 𝑍𝑗 ≈ 𝑧 such that selection weight 𝑤𝑗 can be split with 𝑙; b) response to each 

wave of the Study is missing at random given 𝑍, that is, the response propensity 𝜌 - 

the probability of responding to questionnaire - is independent of the survey variables; 

and c) the split weight is regular consistent estimator of the true unknown weight, The 

different sets of weights we refer to in the subsequent discussion are described in 

Table 1. 

 

3.1. Split selection (SS) weighting 

The first procedure is Split Selection (SS) weighting.  Matched clusters are created using 

variables from main survey wave 10, the (existing) selection weights 𝑤𝑗 are split among 

cluster members, and then (COVID-19) Study IP-NR weights 1 𝜌𝑗⁄  and 1 𝜌𝑙⁄  are 

estimated for the larger dataset.  In step one, the clusters are defined as follows: 

synthetic selection weights are predicted for unweighted respondents based on the 

linear regression of the logs of respondent existing selection weights on the main 

survey wave 10 characteristics (weight logs are modelled to prevent negative values); 
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then, the synthetic weights of unweighted respondents are transformed back to the 

natural scale, and these weights used along with the existing weights to define clusters 

of respondents, with the weights effectively acting as proxies for their characteristics, 

in the following way. The existing selection weight 𝑤𝑗 (or weights if there is more than 

one of the same value) closest to the value of the synthetic weight for 𝑙 is identified, 

and pair (𝑗, 𝑙) are taken to form a cluster.  If a synthetic weight is equally close to two 

(or more) existing selection weights, one (or more) larger and one (or more) smaller, 

then the unweighted respondent is defined as forming a cluster with the respondent(s) 

with the larger existing weight(s) to prevent existing weight respondents from being 

included in more than one cluster.  A graphical depiction of these different ways in 

which clusters may be defined is presented in Fig. 1.  

In step two, the existing selection weights in each cluster can be split among all 

the cluster members as follows: 

𝑤𝑠𝑝𝑙𝑖𝑡 = ∑ 𝑤𝑗 𝑛𝑐⁄𝑛𝑐
𝑗=1 = 𝑤𝑗 𝑛𝑐⁄      (1) 

where 𝑛𝑐  is the number of units in matched-cluster 𝑐 and is equal to 2 unless there 

are ties. Informally, both 𝑤𝑗 and 𝑤𝑙 in the cluster now receive 𝑤𝑠𝑝𝑙𝑖𝑡.  This calculation 

is analogous to the weight splitting proposed by Lavallee (2007).  A justification of it 

can also be based on the simultaneous sampling scheme proposed by Robbins et al. 

(2021, section 2.1.2) by assuming that the sample with selection weights and the 

sample without weights were obtained using different selection procedures, both of 

which are ignorable given the wave 10 variables, but drawn from the same population 

(a further working assumption is made that, given the wave 10 variables, the 

probability of unit having a selection weight is 0.5).  An alternative scheme is ‘weight 
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donation’ in which 𝑗 keeps its weight and 𝑤𝑗 is donated to 𝑙 to estimate unknown 𝑤𝑙.  

This leads to consistent inference if the selection probabilities for 𝑗 and 𝑙 are equal 

given the wave 10 variables.  In practice, neither set of assumptions is likely to hold 

exactly so the pragmatic issue is whether the procedure, using either splitting or 

donation, preserves the estimates based on IP-NR weighted analyses while bringing 

the greatest improvement in precision. 

In step 3, the same main survey wave 10 predictors used to create the synthetic 

selection weights are used to model the COVID—19 Study wave response propensities 

among those with the new (split-) selection weights estimated in step 1, where model 

selection is again undertaken using Lasso and post-selection prediction using OLS (see 

section 2.3 for details).  The product of the new selection weight  

 

and the inverse of individual estimated response propensities gives the COVID-19 

Study SS weights.   

 

3.2. Split IP-NR (SIP-NR) weighting 

An issue the SS procedure in the COVID-19 Study is that it is unable to provide weights 

for the non-trivial number of Study respondents (see below) who did not respond to 

main survey wave 10 and so do not possess the information used to predict synthetic 

main survey (selection) weights and Study response propensities (see section 4.2 for 

numbers of such respondents).  Hence, a second procedure, SIP-NR weighting, is also 

introduced that splits the IP-NR weights estimated for respondents to the Study wave 
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with existing selection weights with unweighted respondents using information 

present for everyone who responded in the COVID-19 Study, not just those with main 

survey information. 

The SIP-NR procedure proceeds as follows: in the first step, the COVID-19 Study 

IP-NR weights are constructed as in section 2.3, by estimating the Study response 

propensities 𝜌𝑗by regressing the response to the Study wave on the wave 10 variables 

among those with the (original and not split) main survey wave 10 ‘selection’ weights 

(using Lasso for model selection as before) then computing the IP-NR weights 𝑤𝑗 𝜌𝑗⁄ ; 

in the second step, the IP-NR weights from step one are split with Study respondents 

lacking such weights, using the Study variables from the relevant wave to match using 

the same matching procedure as set out in section 3.1, to give the Study wave SIPNR 

weight. . 

In the application of SIP-NR weighting to the COVID-19 Study, predictors from 

the Study wave in question are used, with three exceptions.  Sex and Age are from the 

main survey basic characteristics file, due to fewer missing values, and Education is not 

asked in the Study, so an analogue is derived from the main survey responses.  This 

analogue is constructed as follows.  Initially, a response is sought from 2020 calendar 

year dataset i.e. wave 10 year 2 and wave 11 year 1 data.  If such a response does not 

exist, then one is sought from successively the wave 10 year 1 dataset, the wave 9 

dataset, the wave 8 dataset, and the (part later collected) wave 11 year 2 dataset. If a 

response is still absent (~300 at wave 1), then one is imputed using existing response 

category probabilities.  Following this, as with the Study IP-NR weights (see section 

2.3), the split weights are scaled to have a mean of 1 and trimmed. 
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4. Evaluation methods 

4.1. Dataset sizes and respondent sociodemographic characteristics 

COVID-19 Study weighted dataset sizes given the IP-NR, SS and SIP-NR procedures are 

reported.  In addition, the Study measured sociodemographic characteristics of 

respondents weighted by each procedure are presented, enabling evaluation of sub-

group analysis feasibility.  Main survey wave 10 information could not be used in the 

latter comparisons because some SIP-NR weighted respondents lacked it (see section 

3.2).  Similarly, since COVID-19 Study non-respondents lacked Study measured 

information, it was not possible to compare respondents to the Study sample. 

 

4.2. Weight performance 

4.2.1. Non-response bias reduction 

The aim of weighting is to eliminate non-response bias, but unequal weights can lead 

to inefficient estimators, so bias reduction may come with considerable loss of 

precision (Little & Vartivarian 2005).  Hence, both these elements must be considered 

in performance evaluations.  Concerning bias reduction, COVID-19 Study IP-NR and SS 

weights are evaluated by quantifying the ability of weighted mean estimates of main 

survey wave 10 measured characteristics to recover similarly measured benchmarks 

computed for the Study sample using the main survey wave 10 weights.  This approach 

avoids difficulties associated with obtaining external benchmarks (e.g. Hand 2018).  

The characteristics considered include both those in weight response propensity 

models and those not.  However, it is not possible to evaluate SIP-NR weighted mean 

estimates on a similar basis because the main survey wave 10 non-respondents lack 
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relevant auxiliary information (see section 3.2).  Hence, these weights are instead 

evaluated by quantifying their ability to recover benchmark Study IP-NR weighted 

mean estimates of Study wave measured characteristics: such information exists for 

all respondents.  It should be noted though, that this means that it is not possible to 

investigate whether they reduced biases more than Study IP-NR weights (SS weights 

are also similarly evaluated for comparison).  

Comparing benchmark and comparator weighted estimates is problematic in 

terms of statistical testing because the individuals in the former datasets are a subset 

of those in the later i.e. there are partial dependencies.  Had dependencies been 

complete (i.e. datasets consisted of the same individuals), a suitable paired test could 

have been used.   A test that does account for partial dependencies has recently been 

proposed (Crossley et al. 2021; Moore et al. 2024), but its derivation relies on the 

comparator dataset being a subset of the benchmark dataset rather than vice versa.  

Hence, while it can be used to compare IP-NR weighted estimates to main-survey 

weighted benchmarks (IP-NR weighted respondents are a subset of main survey 

weighted respondents), it is not strictly appropriate to use it to evaluate SS and SIP-

NR weighted estimates because datasets include respondents not in the benchmark 

main survey or COVID-19 Study IP-NR weighted datasets.  In this paper, unpaired T 

tests are used to compare benchmark and comparator estimates even though it 

means that their dependencies are not accounted for.  Despite the use of such a test 

leading to an increased false-positive rate of false positives, we note that a) in the 

current context it is less of an issue than an increased rate of false negatives, and b) 

substantively similar results to those reported in section 5.3.1 are obtained using the 
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test mentioned previously (unpublished results).  In addition, as overall performance 

measures, for each weight means across all studied characteristics of absolute 

estimate differences compared to benchmarks, standardized by benchmark estimate 

standard deviations, are reported.  

 

4.2.2. Precision loss 

To reduce precision loss, the last step in each of the weighting procedures is to replace 

weights more than 25 times the weight median with the threshold value (trimming: 

see section 2.3).  A potential consequence of weight splitting is that if the extra 

weighted respondents have similar characteristics to those with weights above this 

threshold, the amount of trimming and therefore its likely impact on bias reduction 

may be decreased.  Hence, to test this possibility, first numbers and (due to differing 

dataset sizes) proportions of weights trimmed given each weighting procedure are 

quantified. 

Second, the DEFF (Kish 1965) is used to quantify precision loss due to the 

trimmed weights.  This metric provides a conservative estimate (weighting variables 

and outcomes of interest are assumed to be uncorreleatd) of the extent to which 

survey sampling error is expected to depart from that under simple random sampling 

with a 100% response rate.  It is calculated as follows:  

 𝐷𝐸𝐹𝐹 = 1 + (𝑆𝐷(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) 𝑚𝑒𝑎𝑛(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)⁄ )2 (7) 
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where 𝑆𝐷(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) is the weight standard deviation.  A larger value implies greater 

precision loss. DEFFs are also transformed (= N / DEFF, where N is dataset size) to 

estimate effective dataset size.  

 

5. Results 

5.1. Dataset sizes 

COVID-19 Study dataset sizes are reported in Table 2.  Cross-sectional datasets include 

all weighted respondents to the wave. Longitudinal datasets include weighted 

respondents to the wave and all waves prior, so are smaller in size. Both decrease in 

size over waves due to attrition, except for the waves 8 and 9 cross-sectional datasets, 

which are larger than the wave 7 equivalent (incentives to complete the survey were 

offered at both waves). SS weighted datasets (see Table 1 for a summary of the 

considered weighting procedures and the respondents that they weight) are 7-15% 

larger than IP-NR weighted datasets.  SIP-NR weighted datasets are 15-25% larger than 

IP-NR weighted datasets. 

 

5.2. Respondent sociodemographic characteristics 

With nine COVID-19 Study waves, there are too many weight type (cross-sectional or 

longitudinal) / wave combinations to report, so Table 3 focusses on the Study 

measured characteristics of the waves 2 cross-sectional and 8 longitudinal datasets.  

The former is reported in columns (i) to (iv)).  IP-NR weighted respondent (the largest 

dataset element) characteristics (column (i)) reflect those of all respondents (column 
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(iv)), though younger Age category proportions are slightly lower, and older Age, 

‘Tenure: Owned’ and ‘Long term health condition: Yes’ category proportions are 

slightly higher. SS but not IP-NR (column (ii)) and SIP-NR weighted only respondents 

(column (iii)) differ from IP-NR weighted respondents. Especially for SIP-NR only, 

compared to all respondents, Male, older Age, Degree, ‘HH type: Single, no kid(s)’, ‘HH 

type: Couple, no kid(s)’, ‘Tenure: Owned’ and ‘Long term health condition: Yes’ 

category proportions are lower, and younger age (sometimes much), A level, No 

Qualifications, ‘Ethnic minority: Yes’, ‘Tenure: Mortgage’, ‘Tenure: Rented’ and ‘HH 

type: Couple, kid(s)’ category proportions are higher. Though explicit comparisons 

were not possible (non-respondents lacked Study information), these differences 

should mean that the weight shared datasets better resemble the Study sample than 

IP-NR weighted datasets.  

Similar occurs with the wave 8 longitudinal datasets (columns v) to viii)).  

Differences between the all respondent dataset (column viii)) and its wave 2 cross-

sectional equivalent are due to non-random attrition. There is also clear evidence with 

these datasets that weight sharing makes subgroup analyses more feasible, with 44 IP-

NR weighted respondents aged 16-19 (rounded, 0.006 * 7325: column v) & see Table 

1 for dataset sizes), and 94 (0.011 * 8569) in the SIP-NR weighted (all respondent) 

dataset. 
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5.3. Weighted dataset performance 

5.3.1. Non-response bias reduction 

In this section, waves two cross-sectional and eight longitudinal weight performance 

is reported.  Waves five and eight cross-sectional and two and five longitudinal weight 

performance is reported in the Appendix and mentioned below. Wave two cross-

sectional weights perform well.  IP-NR and SS weight performance in the statistical 

tests evaluating the recovery of benchmark main survey measured and weighted 

means is reported in columns i) to iii) in Table 4.  Main survey estimates (for 10 

characteristics in response propensity models, 5 not) are in column (i).  IP-NR estimate 

differences are small (column (ii)), with three statistically significant (maximum (max) 

= 0.023).  SS weights perform worse (column(iii)), with seven significant (max = 0.023).  

SS and SIP-NR weight performance in recovering benchmark Study measured IP-NR 

weighted means is reported in columns i) to iii) in Table 5.  IP-NR estimates (for 10 

characteristics in response probability models, five not) are in column (i).  SS estimate 

differences are small (column (ii), with none significant (max = 0.009).  With SIP-NR 

weights (which can only be evaluated this way: see section 4.2.1) (column (iii)), one 

difference is significant (max = 0.013).   

 Wave eight longitudinal weights also perform well.  IP-NR and SS weight 

performance in recovering benchmark main survey measured and weighted means is 

reported in columns iv) to vi) in Table 4.  Main survey estimates are in column (iv).  IP-

NR estimate differences are slightly larger than for the wave two cross-sectional 

weights (column (v)), with nine significant (max = 0.039).  SS weights perform slightly 

better (column (vi)), with seven significant (max = 0.033).  Wave eight longitudinal SS 
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and SIP-NR weight performance in recovering benchmark Study measured IP-NR 

weighted means is reported in columns iv) to vi) in Table 5.  IP-NR estimates are in 

column (iv).  SS estimate differences are small (column (v)), with none significant (max 

= 0.010).  With SIP-NR weights, one difference is significant (max = 0.013).  Results for 

the other weights studied are comparable (see Appendix, Tables 1 to 4).  Cross-

sectional SS weights perform slightly worse than IP-NR weights at recovering main 

survey measured and weighted benchmarks at waves five and eight.  Longitudinal SS 

weights perform slightly worse than IP-NR weights at recovering such benchmarks at 

wave two, but the two sets of weights perform similarly at wave five.  SIP-NR weights 

recover Study measured IP-NR weighted benchmarks slightly better than SS weights 

except in the wave two longitudinal dataset, where the opposite is found. 

 In addition, as overall performance measures, in Figs. 2 and 3 for each 

evaluated weight the means of absolute values of differences compared to benchmark 

weighted estimates of characteristics reported in Tables 3 and 4, standardized by 

benchmark estimate standard deviations, are presented. Results largely reaffirm those 

from the statistical tests. With wave two cross-sectional weights, differences 

compared to benchmark main survey measured and weighted means are reported in 

Fig 2a.   The mean of differences given IP-NR weighted means is 0.018 (largest single 

value (LSV) = 0.066). That given SS weights is slightly larger (= 0.022), with the LSV 

slightly smaller (= 0.049).  Differences compared to benchmark Study measured IP-NR 

weighted means are reported in Fig 3a. The mean of differences given SS weighted 

means is 0.011 (LSV = 0.023).  That given SIP-NR weights is slightly smaller (= 0.007), 

with the LSV also slightly larger (= 0.026).  With wave eight longitudinal weights,  
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differences compared to benchmark main survey measured and weighted means are 

reported in Fig 2b.  The mean of differences given IP-NR weighted means is 0.043 (LSV 

= 0.111).  That given SS weights is slightly smaller (= 0.034), with the LSV also slightly 

smaller (= 0.093).  Differences compared to benchmark Study measured IP-NR 

weighted means are reported in Fig 3b.  The mean of differences given SS weighted 

means is 0.012 (LSV = 0.027).  That given SIP-NR weights is similar (= 0.012), with the 

LSV slightly larger (= 0.04).   

Results for the other studied weights are comparable (see Appendix, Figs 1-4).  

With wave five cross-sectional weights, the mean difference between benchmark main 

survey measured and weighted means and IP-NR weighted means is 0.021 (LSV = 

0.085).  That given SS weighted means is slightly larger (= 0.024), with the LSV smaller 

(= 0.060). The mean difference between benchmark Study measured IP-NR weighted 

means and SS weighted means is 0.016 (LSV = 0.038).  That given SIP-NR weights is 

slightly smaller (= 0.009), with the LSV also slightly smaller (= 0.027).  For wave eight 

equivalents, the mean difference between benchmark main survey measured and 

weighted means and IP-NR weighted means is 0.018 (LSV = 0.075).  That given SS 

weights is slightly larger (= 0.023), with the LSV smaller (= 0.058).  The mean difference 

between benchmark Study measured IP-NR weighted means and SS weighted means 

is 0.013 (LSV = 0.029).  That given SIP-NR weights is slightly smaller (= 0.0011), with the 

LSV also slightly smaller (= 0.025).   

With wave two longitudinal weights, the mean difference between benchmark 

main survey measured and weighted means and IP-NR weighted means is 0.021 (LSV 

= 0.055).  That given SS weights is slightly larger (= 0.026), with the LSV slightly larger 
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(= 0.053).  The mean difference between benchmark Study measured IP-NR weighted 

means and SS weighted means is 0.010 (LSV = 0.02).  That given SIP-NR weights is 

slightly smaller (= 0.009), with the LSV slightly larger (= 0.029).  With wave five 

equivalents, the mean difference between benchmark main survey measured and 

weighted means and IP-NR weighted means is 0.027 (LSV = 0.086).  That given SS 

weights is similar (= 0.027), with the LSV smaller (= 0.065). The mean difference 

between benchmark Study measured IP-NR weighted means and SS weighted means 

is 0.014 (LSV = 0.035).  That given SIP-NR weightsis slightly smaller (= 0.007), with the 

LSV also slightly smaller (= 0.025).   

It should be noted that comparable results in terms of bias reduction were 

obtained for the two procedures when ‘weight-donation’ (unweighted cluster 

members are given weighted cluster member undivided weights) instead of weight-

splitting schemes were used in weight assignment (see also section ??).  Procedure 

weighted estimate differences compared to benchmarks and mean standardized 

biases using weight donation were similar in size to when weight-splitting was used 

(unpubl. results).    

 

5.3.2. Precision loss 

In Table 6, the number and proportion of weights trimmed (replacing weights more 

than 25 times the weight median with the threshold value to reduce precision loss: 

see section 4.2.2) in the cross-sectional and longitudinal waves 2, 5 and 8 datasets are 

reported.  Numbers are slightly greater for the SS than the IP-NR and SIP-NR datasets 
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(which are similar).  However, proportions tend to be lowest in the SIP-NR datasets, 

implying that the extra respondents in these datasets are more similar to those with 

extreme weights, decreasing the amount of trimming and its impact on bias reduction.  

DEFFs and effective dataset sizes given the same trimmed weights are also 

reported in Table 6.   SS weight DEFFs are larger than IP-NR weight equivalents, but 

SIP-NR weight DEFFs are smaller than equivalents for both other weight types, 

implying that SIP-NR weights most reduced precision loss, followed by IP-NR then SS 

weights.  Given also differences in real dataset sizes, this meant that effective dataset 

sizes were largest for the SIP-NR weighted datasets, then the SS weighted datasets, 

then the IP-NR weighted datasets. 

It should be noted that findings differed when weight-donation instead of 

weight-splitting schemes were used in weight assignment.  With weight donation, SIP-

NR weight DEFFs were larger than IP-NR and SS weight DEFFs, with the consequence 

that SS weight effective dataset sizes were larger than SIPNR weight effective datasets 

for three of the six datasets considered (unpubl. Results). These differences occur 

because with weight splitting weighting otherwise unweighted individuals led to a 

reduction in extreme weight value sizes (due to being split with unweighted individuals 

with similar characteristics).  With weight donation, the latter individuals are instead 

assigned the forementioned weight, inflating weight variability.  
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6. Discussion 

We proposed two new procedures that assign weights mapping the survey 

respondents to the target population that include those who, lacking selection 

weights, cannot be weighted using Inverse Propensity Non-Response (IP-NR) methods 

(recalling that IP-NR weight = selection weight * non-response weight). Both form 

(matched) clusters of unweighted and existing weight individuals with similar 

characteristics, and assign weights to unweighted individuals split (sum of existing 

weights in cluster / total number of cluster members) or donate (assign as the 

estimated weight values) the existing weights of cluster members. The accuracy of 

inference for the different procedures and splitting/donation schemes depends on 

how well the underlying assumptions described in section 3.1 hold for UKHLS and the 

COVID-19 Study, which depends on the choice of variables used to match the weights 

and model the response propensities. The first procedure, SS weighting, splits / 

donates existing selection weights, then estimates IP-NR weights for the Study wave in 

question.  The second, SIP-NR weighting, splits / donates IP-NR weights for the Study 

e estimated for those with existing selection weights (see Table 1 for a summary of 

weights estimated).  

Procedure performance was evaluated using the UK Household Longitudinal 

Study (UKHLS) COVID-19 Study datasets. Evaluations considered weighted dataset 

sizes and respondent sociodemographic characteristics, also enabling subgroup 

analysis feasibility to be studied. In addition, non-response bias reduction and 

precision loss due to weight use (weights are inefficient: Little & Vartivarian 2005) was 

quantified.  SS weighted datasets were 7-15% and SIP-NR weighted datasets 15-25% 
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larger than IP-NR weighted equivalents, reducing sampling error.  SS and SIP-NR 

weighted dataset sizes differed due to some COVID-19 Study respondents not 

responding to main survey wave 10 and so lacking the information used by SS 

weighting to split selection weights (in contrast, SIP-NR weighting used information 

from the survey wave, which existed for all respondents, to split IP-NR weights, though 

SS weighting did benefit from it being possible to provide selection weights for Study 

non-respondents as well as respondents with main survey wave 10 information: see 

section 3).  SS but not IP-NR and especially SIP-NR only weighted respondents differed 

(were younger, less educated, less likely to have children, more likely to be ethnic 

minorities) from IP-NR weighted respondents. Explicit comparisons were not possible 

because non-respondents lacked Study information, but these differences should 

mean that SS and SIP-NR weighted datasets better resemble the Study sample than IP-

NR weighted datasets (see also following paragraph).  Moreover, subgroup analyses 

will be more feasible: for example, there were more than twice as many respondents 

aged 16-19 in the wave 8 longitudinal SIP-NR weighted dataset than in the IP-NR 

weighted equivalent (as they only considered responses to the Study, longitudinal as 

well as cross-sectional IP-NR weights suffered from zero weights). 

 Non-response bias was evaluated by quantifying how well weighted estimates 

of respondent characteristics recovered benchmark estimates.  Study IP-NR and SS 

weighted mean estimates of main survey wave 10 measured characteristics were 

statistically compared to main survey wave 10 weighted benchmarks. However, this 

was not possible for SIP-NR weights because, as noted previously, some respondents 

lacked main survey wave 10 information. Hence, though it meant that whether they 
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reduced biases more than Study IP-NR weights could not be studied (extra 

respondents may improve performance if datasets better resemble study populations: 

Schouten et al. 2016; Moore et al. 2024), they were instead evaluated by comparing 

mean estimates of Study measured characteristics to Study IP-NR weighted 

benchmarks (SS weights were also similarly evaluated). Focusing on ‘split’ weights, the 

tests showed that Study IP-NR weights recovered main survey weighted benchmarks 

slightly better than SS weights in four of the six wave / type (cross-sectional or 

longitudinal) combinations evaluated, in another the opposite was found, and the 

weights performed similarly in the final combination.  SIP-NR weights recovered Study 

IP-NR weighted benchmarks slightly better than SS weights in three of the 

combinations, in another the opposite was found, and the weights performed similarly 

in the final two combinations. In addition, absolute differences were standardized by 

benchmark estimate standard deviations and means calculated to provide overall 

performance measures. Results were mostly similar to those from the statistical tests 

(IP-NR weights performed very slightly better than SS weights in the combination 

where the tests showed they performed equally well, and SIP-NR weights performed 

very slightly better than SS weights in the two combinations where the tests showed 

they performed equally well).   

 Precision loss was evaluated in several ways.  First, weights were trimmed 

(values more than 25 times the weight median were replaced with threshold values) 

as a last step in weighting procedures to reduce precision loss.  Trimming is likely to 

decrease bias reduction, but with weight splitting less may be needed if the extra 

respondents have the same characteristics as those with extreme weights.  To study 
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this, numbers and (given differing dataset sizes) proportions of trimmed weights were 

quantified. Numbers trimmed increased with weight splitting, but proportions were 

lower in SIP-NR weighted datasets than IP-NR or SS weighted datasets. This implies 

that SIP-NR weighting enabled less trimming, decreasing impacts on bias reduction.  

Second, for trimmed weights, precision loss was quantified using DEFFs (Kish 1965), 

which estimate the extent to which sampling error departs from that given simple 

random sampling with 100% response.  All SS weight DEFFs were larger than IP-NR 

equivalents, implying greater precision loss.  However, SIP-NR weight DEFFs were 

always smaller than equivalents given both the IP-NR and SS weights, implying that 

SIP-NR weighting reduced precision loss compared to the other procedures. In 

addition, DEFFs were transformed to estimate effective weighted dataset sizes.  Given 

also numbers of respondents in datasets, the SIP-NR procedure resulted in the largest 

effective dataset sizes, followed by the SS procedure, then the IP-NR procedure.  

Findings concerning bias reduction when weight-donation rather bias spltting 

schemes were used to assign weights were similar to those outlined above.  However, 

patterns in DEFFs and estimated effective dataset sizes differed, with SS weight 

datasets often being larger than SIPR weight datasets. These differences occur because 

with weight splitting weighting otherwise unweighted individuals led to a reduction in 

extreme weight value sizes (due to being split with unweighted individuals with similar 

characteristics).  With weight donation, the latter individuals are instead assigned the 

forementioned weight, inflating weight variability.  

This research has implications for both the UKHLS COVID-19 Study and survey 

design in general.  For the COVID-19 Study, it shows that the new procedures weight 
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more respondents than IP-NR methods, reducing sampling error and increasing 

subgroup analysis feasibility, while maintaining and indeed improving weight 

performance in terms of reducing non-response bias and minimizing precision loss.  

Hence, as the procedure resulted in the most weighted respondents and the largest 

effective weighted dataset sizes, in the December 2021 dataset release SIP-NR weights 

were supplied (see Institute for Social and Economic Research 2021). 

Concerning survey design more generally, the question arises as to whether the 

new procedures can be used in other surveys.  Respondents without cross-sectional 

IP-NR weights occur in most HH panel surveys (Schonlau et al. 2013).  Moreover, 

previous solutions to this issue have limitations.  Sharing existing selection weights 

among HH members then estimating IP-NR weights provides unbiased estimates and 

is used in many surveys (Ernst 1989; Lavallée 1995; 2007; Heeringa et al 2011; Taylor 

et al. 2018; University of Essex & Institute for Social and Economic Research 2019; 

Zhang 2021).  However, it cannot weight those in HHs without existing selection 

weighted members.  Predicting wave 1 HH selection probabilities for unweighted 

respondents, using these to adjust current wave values for multiple selection paths, 

then estimating individual selection weights and IP-NR weights can weight all 

respondents and is used in several other surveys (Haisken-Denew & Frick 2005; 

Watson 2012).  However, it is model based, predictions can only be made using 

responding HH selection probabilities, and adjustments for multiple selection paths 

require assumptions.  By contrast, the new procedures can also (potentially: see 

below) weight all respondents and are more easily implemented than selection 
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probability prediction. In addition, in the COVID-19 Study they performed well at 

reducing non-response bias and precision loss due to weight use.   

That said, it is advised that the new procedures only be used to weight all non 

IP-NR weighted survey respondents if there is no alternative i.e. if, as in the UKHLS 

COVID-19 Study, HH structure is not enumerated.  As noted previously, HH weight 

sharing produces unbiased estimates, whereas weight splitting is justified on the basis 

of exchangeability of weighted and unweighted respondents with the same 

characteristics and so is model based.  Moreover, SIP-NR weighting can only split the 

weights of current wave respondents, so when less than 100% of sample members 

respond, unweighted respondents may be assigned the (split) weights of those with 

less similar characteristics than if all had responded (see also section 3.2).  To a lesser 

extent, this issue also occurs with SS weighting: only respondent selection weights can 

be split (as mentioned in the last paragraph, an analogous issue also arises with 

selection probability prediction).  If the new procedures must be used, the evaluations 

reported here suggest that SIP-NR weighting should be utilised.  However, if 

comparable auxiliary information exists for all respondents to the survey wave, for 

example because they all responded to a previous wave (one reason for supplying 

COVID-19 Study SIP-NR weights is that such information did not exist – see previously), 

SS weights should be estimated and performance compared.  This performance 

comparison will also be of wider interest to survey designers: as noted previously, the 

fore-mentioned lack of comparable information on all Study respondents also affected 

the methods used to evaluate procedure performance in this paper. 
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In surveys in which HH structure is enumerated, a different role for the new 

procedures is envisaged: to weight those not weighted by HH weight sharing (see 

Schonlau et al. 2013 for the suggestion that a similar strategy involving selection 

probability prediction be used).  If information on all HH members exists from HH or 

individual questionnaires, a variation of SS weighting should be evaluated.  Selection 

weights or their analogues can be predicted for all enumerated sample members not 

weighted by HH weight sharing, then, using the same information, IP-NR weights can 

be computed after response propensity estimation for the larger sample (see section 

2.4 for the use of the HH weight sharing element of this strategy in the UKHLS main 

survey).  If this is not possible, SS weighting as utilized in this paper can instead be used 

in the outlined procedure (though new survey entrants will not be weighted due to 

lacking comparable auxiliary information), or, after IP-NR weight estimation using HH 

weight shared selection weights, SIP-NR weighting can be utilized. With all methods, 

weight performance should be evaluated, ideally compared to that of weights 

estimated by other methods, including selection probability prediction.  However, now 

that multiple methods exist, it is also noted that given the benefits there is no reason 

for survey designers not to seek to ensure that all respondents are supplied with non-

response weights.   
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Table 1: The different forms of non-response weight estimated and evaluated in this 

paper. 

 

Table 2: Cross-sectional and longitudinal COVID-19 Study weighted dataset sizes. 

Cross-sectional datasets contain respondents to the mentioned wave.  Longitudinal 

datasets contain respondents to all waves up to and including the mentioned wave 

i.e. wave 4 includes respondents to all of waves 1, 2, 3 and 4.   IP-NR datasets contain 

only respondents with the UKHLS main survey wave 10 weight required for IP-NR 

weight production. SS datasets contain the same respondents plus those with main 

survey information, which together can be weighted by the SS procedure. SIP-NR / N 

datasets contain all respondents, which together can only be weighted by the SIP-NR 

procedure.   

 

Table 3: COVID-19 Study focal wave measured sociodemographic characteristics of the 

components of the wave 2 cross-sectional and wave 8 longitudinal datasets.  We 

present the characteristics of IP-NR weighted respondents (respectively columns (i) & 

(v)), of respondents weighted by SS but not IP-NR methods (columns (ii) & (vi)), of 

respondents weighted only by SIP-NR methods (columns (iii) & (vi)); and of all 

respondents combined i.e. (i) + (ii) + (iii) and (v) + (vi) + (vii) (columns (iv) & (vii)). 
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Table 4: COVID-19 Study wave 2 cross-sectional and wave 8 longitudinal weight 

performance in recovering means of main survey measured and weighted 

characteristics.  Main survey weighted mean estimates and (in brackets) their 

standard errors (’wt. est.’; columns (i) & (iv)); tests of differences between such 

estimates and estimates given COVID-19 Study IP-NR weights (columns (ii) & (v)); and 

tests of differences between such estimates and estimates given COVID-19 Study SS 

weights (columns (iii) & (vi)) are reported.  * equals P<0.05, ** equals P<0.01, *** 

equals P<0.001.  Differences exist between the two sets of main survey estimates due 

to more sample member deaths by wave 8. 

 

Table 5: COVID-19 Study wave 2 cross-sectional and wave 8 longitudinal weight 

performance in recovering means of COVID-19 Study measured IP-NR weighted 

characteristics.  COVID-19 Study IP-NR weighted mean estimates and (in brackets) 

their standard errors (’wt. est.’; columns (i) & (iv)), tests of differences between such 

estimates and estimates given SS weights (‘wt. diff.’; columns (ii) & (v)), and tests of 

differences between such estimates and estimates given SIP-NR weights (columns (iii) 

& (vii)) are reported.   * equals P<0.05, ** equals P<0.01, *** equals P<0.001.   

 

Table 6: Numbers of trimmed weights and their proportions, and DEFFs and effective 

dataset sizes given the COVID-19 Study waves 2, 5 and 8 cross-sectional and 

longitudinal IP-NR, SS and SIP-NR weights. 
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Table 1: 

Weighting strategy Methods 

1) Inverse propensity 

non-response (IP-NR) 

weight 

a) For original survey sample members with (existing) 

selection weights, model and estimate response 

propensities for given survey wave. 

b) IP-NR weight = selection weight * (1 / response 

propensity). 

2) Split selection (SS) 

weight 

a) Split the existing selection weights of original sample 

members with unweighted survey sample members with 

similar characteristics. 

b) For this larger sample with the new weight, estimate 

response propensities and compute IP-NR weights for 

given survey wave as in 1).  

3) Split IP-NR (SIP-NR) 

weight 

a) For survey original sample members with existing 

selection weights, estimate response propensities and 

compute IP-NR weights for given survey wave as in 1). 

b) Split the IP-NR weights computed for original sample 

members in step a) with unweighted survey respondents 

with similar characteristics.  
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Table 2: 

COVID-19 Study wave 

 1 2 3 4 5 6 7 8 9 

Cross-sectional:         

   IP-NR 13994 12013 11515 11261 10616 9989 9915 10615 10489 
   SS 16604 14086 13453 13112 12332 11556 11471 12129 12250 
   SIP-NR / N 17761 14811 14123 13754 12876 12035 11968 12680 12818 

          

Longitudinal:         

   IP-NR  11220 10293 9957 8857 8102 7610 7325 6857 
   SS  13106 11968 11061 10202 9286 8697 8335 7801 
   SIP-NR / N  13698 12437 11458 10541 9574 8947 8569 8009 
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Table 3: 

 Wave 2 cross-sectional Wave 8 longitudinal 

 IP-NR SS not 
IP-NR 

SIP-NR 
only 

All  IP-NR SS not 
IP-NR 

SIP-NR 
only 

All  

 (i) (ii) (iii) (iv) = (i) + 
(ii) + (iii) 

(v) (vi) (vii) (viii) = (v) + 
(vi) + (vii) 

Gender: Male 0.418 0.395 0.374 0.413 0.420 0.404 0.363 0.417 

Age: 16-19 0.019 0.011 0.178 0.025 0.006 0.003 0.201 0.011 
Age: 20-29 0.073 0.136 0.145 0.086 0.051 0.094 0.098 0.057 

Age: 30-39 0.111 0.174 0.163 0.123 0.088 0.139 0.090 0.094 

Age: 40-49 0.167 0.207 0.167 0.173 0.138 0.194 0.171 0.146 

Age: 50-59 0.221 0.224 0.181 0.219 0.215 0.241 0.231 0.218 

Age: 60-69 0.215 0.156 0.114 0.202 0.259 0.202 0.154 0.249 

Age: 70-79 0.161 0.074 0.040 0.143 0.205 0.105 0.051 0.189 

Age: 80-89 0.030 0.018 0.012 0.028 0.036 0.023 0.004 0.033 
Age: 90+ 0.002 0.000 0.000 0.002 0.002 0.000 0.000 0.002 
Qualifications: 
Degree 

0.506 0.518 0.440 0.505 0.514 0.530 0.461 0.515 

Qualifications: A-
level 

0.197 0.219 0.235 0.202 0.193 0.227 0.199 0.197 

Qualifications: GCSE 
or lower 

0.290 0.256 0.311 0.286 0.288 0.240 0.330 0.283 

Family type: Single, 
no kid(s) 

0.109 0.120 0.092 0.109 0.110 0.130 0.141 0.113 

Family type: Single, 
kid(s) 

0.020 0.036 0.034 0.023 0.015 0.038 0.030 0.018 

Family type: Couple, 
no kid(s) 

0.302 0.302 0.200 0.297 0.349 0.362 0.239 0.347 

Family type: Couple, 
kid(s) 

0.202 0.245 0.308 0.213 0.162 0.207 0.295 0.171 

Ethnic minority: Yes 0.103 0.124 0.171 0.109 0.076 0.082 0.126 0.078 
Country: England 0.815 0.799 0.797 0.812 0.831 0.807 0.799 0.827 
Country: Wales 0.060 0.057 0.057 0.060 0.054 0.045 0.060 0.053 
Country: Scotland 0.084 0.100 0.099 0.087 0.078 0.105 0.103 0.082 

Country: Northern 

Ireland 

0.041 0.044 0.047 0.042 0.037 0.044 0.038 0.038 

Tenure: Owned 0.473 0.330 0.241 0.442 0.547 0.409 0.302 0.524 

Tenure: Mortgage 0.356 0.431 0.477 0.372 0.310 0.397 0.474 0.324 
Tenure: Rented 0.023 0.038 0.059 0.027 0.018 0.034 0.026 0.020 
Long-term illness: 

Yes 

0.530 0.478 0.404 0.517 0.597 0.555 0.479 0.589 
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Table 4: 

 Wave 2 cross-sectional Wave 8 longitudinal 

 Main  Covid   Main Covid  

  IP-NR SS  IP-NR SS 

 wt est. wt diff. wt. diff wt est. wt diff. wt. diff 

 (i) (ii) (iii) (iv) (v) (vi) 

In IPW model:      
Subjective financial 
situation (SFS): 
comfortable or OK  

0.716 0.005 0.015** 0.716 -0.011 -0.006 
(0.003)   (0.003)   

SFS: just about getting 
by 

0.203 -0.008 -0.013** 0.203 -0.003 -0.002 
(0.002)   (0.002)   

SFS: finding it quite / 
very difficult 

0.081 0.003 -0.002 0.081 0.015*** 0.008* 
(0.002)   (0.002)   

Tenure: Owned 0.343 0.009 0.023*** 0.343 -0.020** -0.005 
(0.003)   (0.003)   

Tenure: Mortgage 0.341 -
0.021*** 

-0.015** 0.341 -
0.021*** 

-0.019** 

(0.003)   (0.003)   
Tenure: Rented 0.119 0.004 -0.004 0.119 0.007 -0.003 

(0.002)   (0.002)   
Tenure: Social 
Housing 

0.195 0.006 -0.004 0.195 0.033*** 0.027*** 
(0.002)   (0.002)   

Low skill occupation 0.362 -0.003 -0.005 0.362 0.011 0.014 
(0.004)   (0.004)   

Savings income? 0.372 -0.002 0.012* 0.372 -
0.034*** 

-
0.032*** 

(0.003)   (0.003)   
Behind with some or 
all bills 

0.059 -0.001 -
0.008*** 

0.059 0.006* 0.003 

(0.001)   (0.001)   
Not in IPW model:      
Income poverty 0.155 0.010* 0.005 0.155 0.027*** 0.025*** 

(0.002)   (0.002)   
Receives core benefit 0.054 0.003 0.001 0.054 0.010*** 0.008** 

(0.001)   (0.001)   
Visited GP 0.700 -0.001 -0.003 0.700 0.004 0.005 

(0.003)   (0.003)   
Smoker  
 

0.144 0.023*** 0.016*** 0.144 0.039*** 0.033*** 
(0.002)   (0.002)   

Hospital outpatient 0.433 0.002 0.005 0.433 0.004 0.009 

(0.003)   (0.003)   
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Table 5: 

 Wave 2 cross-sectional Wave 8 longitudinal 

 IP-NR SS SIP-NR IP-NR SS SIP-NR 

 wt est. wt. diff wt diff. wt. est. wt diff. wt. diff 

 (i) (ii) (iii) (iv) (v) (vi) 

In IPW model:      
Subjective financial 
situation (SFS): 
comfortable or OK  

0.756 0.009 -0.001 0.767 0.006 -0.001 
(0.004)   (0.005)   

SFS: just about getting 
by 

0.182 -0.005 -0.002 0.189 -0.002 0.001 
(0.004)   (0.005)   

SFS: finding it 
quite/very difficult 

0.062 -0.004 0.003 0.044 -0.004 -0.001 
(0.002)   (0.002)   

Employed? 0.607 -0.009 -0.001 0.601 -0.010 0.001 
(0.004)   (0.006)   

Behind with some or all 
bills 

0.073 -0.006 -0.001 0.048 -0.006 -0.004 
(0.002)   (0.003)   

Behind with housing 
payments 

0.065 -0.004 0.002 0.089 0.001 -0.001 
(0.002)   (0.005)   

HH type: Couple with 
children 

0.203 -0.005 -0.007 0.179 -0.002 -0.009 
(0.004)   (0.004)   

HH type: Single, no 
children 

0.121 -0.002 0.002 0.119 -0.006 0.001 
(0.003)   (0.004)   

Covid test? 0.040 0.000 -0.001 0.226 -0.001 -0.017* 
(0.002)   (0.005)   

Clinically vulnerable 0.389 0.007 0.013* 0.427 0.010 0.006 
(0.004)   (0.006)   

Not in IPW model:      
Advised to shield 0.068 0.002 0.003 0.069 -0.000 0.001 

(0.002)   (0.003)   
Gave or received 
money 

0.151 0.002 0.001 0.116 -0.001 0.000 
(0.003)   (0.004)   

Less sleep than usual 0.218 -0.003 -0.000 0.181 -0.006 -0.009 
(0.004)   (0.005)   

More depressed than 
usual 

0.286 -0.001 0.002 0.232 -0.005 -0.006 
(0.004)   (0.005)   

More lonely than usual 0.086 -0.000 -0.001 0.079 -0.003 -0.004 

(0.003)   (0.003)   

 

  



47 

 

Table 6: 

  IP-NR SS SIP-NR 

Type Wave Trimmed 
(Prop.) 

DEFF   
(E.D. Size) 

Trimmed 
(Prop.) 

DEFF   
(E.D. Size) 

Trimmed 
(Prop.) 

DEFF   
(E.D. Size) 

Cross-
sectional 

2 26 
(0.0022) 

2.779 
(4333) 

32 
(0.0023) 

3.047 
(4623) 

27 
(0.018) 

2.726 
(5433) 

 5 27 
(0.0025) 

2.932 
(3621) 

35 
(0.0028) 

3.209 
(3843) 

26 
(0.0020) 

2.802 
(4595) 

 8 18 
(0.0017) 

2.777 
(3822) 

25 
(0.0021) 

3.083 
(3934) 

26 
(0.0021) 

2.763 
(4639) 

Longitudinal 2 28 
(0.0025) 

2.968 
(3780) 

40 
(0.0031) 

3.225 
(4064) 

29 
(0.0021) 

2.902 
(4720) 

 5 23 
(0.0026) 

2.988 
(2964) 

33 
(0.0032) 

3.301 
(3091) 

19 
(0.0018) 

2.847 
(3702) 

 8 18 
(0.0025) 

2.932 
(2498) 

25 
(0.0030) 

3.189 
(2614) 

17 
(0.0020) 

2.873 
(2983) 
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Figure 1: A graphical representation of cluster definition in the two new weight sharing 

procedures. 𝑤(1), 𝑤(2), 𝑤(3), 𝑤(4) and 𝑤(5) are existing (selection or IP-NR) weights 

ordered according to size (x-axis).  𝑤̂(1), 𝑤̂(2), 𝑤̂(3) and 𝑤̂(4) are similarly ordered 

synthetic weights.  Three clusters of existing and synthetic weights are depicted that 

show the different ways in which clusters may be defined.  Cluster 1 consists of the 

synthetic weight 𝑤̂(1) and two existing weights that are closest to it, 𝑤(1) and 𝑤(2), 

which are of the same size.  If instead 𝑤(1) < 𝑤(2), then this cluster would be formed 

of  𝑤̂(1) and 𝑤(2) only.  Cluster 2 consists of the synthetic weight 𝑤̂(2) and the existing 

weight 𝑤(4), which is same distance away from  𝑤̂(2) as 𝑤(3) (i.e. 𝑎 = 𝑏 where 

𝑎 =  𝑤̂(2) − 𝑤(3) and 𝑏 =  𝑤(4) − 𝑤̂(2)), but is the larger of the two mentioned existing 

weights.  Cluster 3 consists of the synthetic weights 𝑤̂(3) and 𝑤̂(4), and the existing 

weight 𝑤(5), which is the closest existing weight to both the mentioned synthetic 

weights.  See main text for further explanation. 

 

Figure 2: Box plots of absolute values of the tests of COVID-19 Study weights reported 

in Table 4, standardised by benchmark estimate standard deviations. In a), tests 

compare wave 2 cross-sectional dataset IP-NR (white bars) and SS (light grey bars) 

weighted estimates of main survey measured characteristics to main survey weighted 

benchmarks. In b), tests compare wave 8 longitudinal dataset IP-NR (white bars) and 

SS (light grey bars) weighted estimates of main survey measured characteristics to 

main survey weighted benchmarks.  In plots, bars indicate the inter-quartile range, the 

line within the median value, and the cross the mean value.  Whiskers indicate 

minimum / maximum values, unless values exist that are smaller or larger than the 
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inter-quartile range, in which case they indicate the smallest / largest value within this 

range, and the outlying values are indicated by circles.  

 

Figure 3: Box plots of absolute values of the tests of COVID-19 Study weights reported 

in Table 5, standardised by benchmark estimate standard deviations. In a), tests 

compare wave 2 cross-sectional dataset SS (light grey bars) and SIP-NR (dark grey bars) 

weighted estimates of COVID-19 Study measured characteristics to COVID-19 Study 

IP-NR weighted benchmarks. In b), tests compare wave 8 longitudinal dataset SS and 

SIP-NR weighted estimates of COVID-19 Study measured characteristics to COVID-19 

Study IP-NR weighted benchmarks.  In plots, bars indicate the inter-quartile range, the 

line within the median value, and the cross the mean value. Whiskers indicate 

minimum / maximum values, unless values exist that are smaller or larger than the 

inter-quartile range, in which case they indicate the smallest / largest value within this 

range, and the outlying values are indicated by circles.  
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Fig. 3 
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Supplementary Information for ‘Two new solutions to the zero non-response 

weight problem’ by J.C. Moore and P.S. Clarke 

 

Appendix A 

 Lasso variable selection methods: details and use 

Lasso procedures are regularised regression methods.  As with other regularised 

regression methods, they minimise the sum of squared deviations between predicted 

and observed values similar to Ordinary Least Squares (OLS), but in addition impose a 

regularisation penalty on model complexity (Ahrens et al. 2020).  Due to the 

imposition of this penalty, such methods tend to outperform OLS in terms of out of 

sample prediction, as reducing model complexity and inducing shrinkage bias 

decreases prediction error.  In doing so, they also address the problem of model 

overfitting: high in-sample fit, but poor prediction performance on unseen data. 

 Regularised regression methods incorporate tuning parameters that 

determine the amount and form of regularisation penalty.  With Lasso procedures 

(Tibshirani 1996; Steyerberg et al. 2001), the mean squared error is minimised subject 

to a penalty on the absolute size of coefficient estimates: 

𝛽̂𝑙𝑎𝑠𝑠𝑜(𝜆) = arg min
1

𝑛
∑ (𝑦𝑖−𝑥𝑖

′𝛽)2𝑛
𝑖=1 +  

𝜆

𝑛
∑ 𝜓𝑗

𝑝
𝑗=1 |𝛽𝑗|,   (1) 

where 𝛽̂𝑙𝑎𝑠𝑠𝑜(𝜆) are the Lasso estimated coefficients for each predictor in the 

considered set p given the tuning parameter 𝜆 that determines the overall penalty 

level, n is sample size, 𝑦𝑖 is the value of the response variable for subject i = 1,..n, 𝑥𝑖
′ 

are the values of the predictors for the same subjects, 𝛽 are the OLS estimated 
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coefficients for the predictors, and 𝜓𝑗are (given 𝜆) predictor-specific penalty loadings. 

A 𝜆 of zero results in the OLS model.  Increasing 𝜆 ultimately results in an empty model, 

with all coefficients set to zero.  It is this setting of some coefficients to zero and 

removal of predictors from models that enables Lasso to be used as a model selection 

technique.  Note that in this paper we assume that predictors are uncorrelated and 

hence that Lasso-type penalisation is all that is necessary, enabling us (after 

standardising predictors so that they have equal variances) to set 𝜓𝑗 all to unity: for 

methods suitable when this assumption is relaxed, see Zhou & Hastie (2005) & Ahrens 

et al. (2020).   

 Several techniques exist to choose the value of the tuning parameter 𝜆.  The 

first of these is cross-validation, which explicitly evaluates out of sample prediction 

performance.  The data in question are split into training and validation datasets.  The 

models for different values of 𝜆 are then estimated and variables selected using the 

training dataset.  Next, they are fitted to the validation dataset, and mean squared 

prediction errors calculated to quantify performance (Ahrens et al. 2020).  For 

example, with the commonly used K-fold cross-validation technique datasets are split 

into K groups of approximately equal size (Geisser 1975).  One group is treated as the 

validation dataset, and the others combined as the training dataset.  Then, for each 

value of 𝜆, models are identified and their performance quantified multiple times in a 

process that involves each data point being used for validation once.  

The second technique is the use of information criteria.  Information criteria 

are closely related to regularised regression methods, being interpretable as 

likelihood methods that penalise the number of parameters in models.  Again, models 
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for different 𝜆 are estimated and variables selected, then the best performing is 

chosen based on information criteria value.  The Akaike Information Criterion (Akaike 

1974) or the Bayesian Information Criterion (Schwarz 1978) may be used, along with 

their extensions (for small n / high p relative to n) the corrected AIC (AICc: Sugiura 

1978) and the Extended BIC (EBIC: Chen & Chen 2008).     

 When producing the inverse propensity weights released with the UKHLS 

Covid-19 Study and in the main text of this paper, we use information criteria 

techniques to choose values of 𝜆 and identify models for estimating subject response 

probabilities.  Specifically, we utilise the EBIC (in the Stata 16 package ‘lassologit’: see 

Ahrens et al. 2020), which is:  

𝐸𝐵𝐼𝐶𝜉(𝜆) = 𝑛 𝑙𝑜𝑔(𝜎̂2(𝜆)) + 𝑑𝑓(𝜆) 𝑙𝑜𝑔(𝑛) + 2𝜉𝑑𝑓(𝜆) 𝑙𝑜𝑔(𝑝),   (2) 

where 𝜎̂2(𝜆) = 𝑛 − 1 ∑ 𝜀𝑖
2𝑛

𝑖=1  and 𝜀𝑖 are the residuals.  𝑑𝑓 is the effective degrees of 

freedom, the penalisation parameter common to all information criteria, and in this 

case is quantified as the number of coefficients estimated to be non-zero.  𝜉[0,1] is a 

second penalisation parameter included in the EBIC to prevent over-selection of 

variables when p is relatively large, and is quantified as:   

𝜉 = 1 − 𝑙𝑜𝑔(𝑛) (2 𝑙𝑜𝑔(𝑝))⁄      (3) 

We ultimately utilise EBIC techniques because in simulations Ahrens et al. (2020) show 

that in the majority of scenarios they perform best out of those mentioned earlier (all 

of which are available in the ‘lassologit’ package and its sister package ‘lassopack’: see 

Ahrens et al. 2020) in terms of model identification, that is, in terms of lowest rates of 

false positives (identifying predictors not correlated with the response variable) and 
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false negatives (not identifying actual correlates of the response variable).  We note 

though, that some of the findings replicate earlier work: see, for example, Chen & 

Chen (2008) for simulations showing that the EBIC performs better than the BIC.  

Moreover, there are theoretical reasons why such findings might be expected.  First, 

supporting their use for model identification, BIC techniques are the only ones of 

those tested that are model consistent, that is, will select the ‘true’ model (if in the 

potential set) with a probability nearing one as sample size tends to infinity (Yang 

2005; Zhang et al. 2010).  Second, when model identification is the goal, theory 

indicates that cross-validation training datasets should be small and validation 

datasets should be close to n, because more data are required to identify the correct 

model than to reduce bias and variance (Yang 2006).  This does not occur with the K-

fold cross-validation technique included in ‘lassopack’ (and in most other Lasso 

software packages: see, for example,  StataCorp 2017), with which the training dataset 

is ~ n/K (see earlier).  We note here that given this, intuitively at least the relatively 

small size of most survey datasets may preclude the use of more appropriate cross-

validation techniques for identifying response probability models anyway: a 

sufficiently large evaluation dataset may lead to too small a training dataset for initial 

model selection to reliably take place. 

 As mentioned in the second paragraph of this section, for the above 

techniques to be used as described predictors must first be standardised so that they 

have unit variance.  Hence, when modelling Covid-19 Study response probabilities we 

first converted all multi-category predictors and interactions into dummy variables.  

We also set up models so that the predictors ‘Gender’, ‘Age’ and ‘Education’ and their 
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interactions could not be removed during Lasso procedures, and included in the final 

selected predictor sets all dummy variables associated with Lasso-selected predictors: 

this approach reduced biases in weighted estimates compared to main survey wave 

10 values (unpublished results).  After model identification, we utilised post-Lasso OLS 

estimation to estimate subject response probabilities for weight calculation.  This is 

because Lasso estimated coefficients are subject to attenuation bias (Ahrens et al. 

2020).  We fitted probit models including the Lasso-selected predictors, then 

computed estimated response probabilities using model coefficients and subject 

characteristics.  
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Appendix B 

We now sketch a framework in which the combined sampling design of UKHLS and its 

Covid-19 Study sits and use this to set out the conditions under which the SS and SIP-

NR procedures we propose will give us valid first-order inference. 

The structure is as follows:  

• Appendix B.1 sets up notation and uses it to describe the changing 

population;  

• Appendix B.2 describe the UKHLS main survey sample as a bipartite incidence 

graph sampling (BIGS) scheme.  

• Appendix B.3 reviews the pragmatic assumptions made for UKHLS when 

making inference.   

• Appendix B.4 finally comes to the Covid-19 Study and sets out the conditions 

under which the SS and SIP-NR procedures described by Moore and Clarke 

(2024, sec. 3) can be used to make valid inferences about the population at 

the time of the Covid-19 Study. 

It should be noted that the development represents a simplification of the UKHLS and 

UKLS Covid-19 Study designs but these simplifications do not undermine the results. 

 

B.1 BIGS Notation and Change in UKHLS Target Population 

We take the UKHLS main survey at Waves 9 to be obtained by direct and indirect 

sampling (Lavallee 2007).  This means it can also be characterized as a special case of 

Bipartite Incidence Graph Sampling (BIGS) scheme (e.g. Zhang 2022; Zhang and Patone 
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2017).  Within the BIGS framework, the target population is characterised by ℬ =

{𝐹, Ω, ℋ} where, in our case, 𝐹 is the primary (directly sampled) population, Ω is the 

secondary (indirectly sampled) population, and (𝑖𝜅) ∈ ℋ is the set of structural links 

in the population between pair 𝑖 ∈ ℱ and 𝜅 ∈ Ω such that the direct selection of 𝑖 

leads to forward/indirect selection of 𝜅 if (and only if) (𝑖𝜅) ∈ ℋ, else (𝑖𝜅) ∉ ℋ. 

To characterise the clusters formed by the links in ℋ, define also the set 𝛼(𝑖) =

{𝜅: (𝑖𝜅) ∈ ℋ} of individuals who would be indirectly selected were 𝑖 ∈ ℱ selected into 

the sample, and the set 𝛽(𝜅) = {𝑖: (𝑖𝜅) ∈ ℋ} of those in ℱ who, if directly selected, 

induce the inclusion of 𝜅 ∈ Ω in the sample.  The number of units in these sets is 

denoted by |𝛼(𝑖)|  and |𝛽(𝜅)|, respectively. 

But before framing our sampling design as a BIGS scheme, we describe the evolution 

of the population between UKHLS Wave 1 (incorporating the Ethnic Minority Boost 

Sample) and the time of the Covid-19 Study 

Let 𝒫0 be the UK population at UKHLS Wave 1 or baseline 𝑡 = 0.  The available 

Postcode Address File (PAF) determines the partition 𝒫0 = 𝒯0 ∪ 𝒯̅0, where 𝒯0 is the 

subpopulation with non-zero selection probabilities and 𝒯̅0 the left-out individuals 

whose selection probabilities are zero. 

Now let 𝒫1 be the population at Wave 6 the time of the Immigrant and Ethnic Minority 

Boost (IEMB) sample.  The available PAF at Wave 6 and focus on areas of high minority 

ethnic densities allows us to modify the partition to be 𝒫1 = 𝒯1 ∪ 𝒯̅1 where (ignoring 

survival for now) 𝒯1 includes 𝒯0 and all those whose selection probabilities are now 



62 

 

non-zero as a result of the IEMB design; likewise, 𝒯̅1 includes those people in 𝒯̅0 and 

those population newcomers 𝒩1 whose selection probabilities remain non-zero. 

Note that all population sets are taken to include both eligible and ineligible 

individuals: it is assumed that the focus on eligible individuals will be done by the 

analyst through sample exclusions or zero weights.  The weight construction Moore 

and Clarke (2024), for example, includes only eligible adults. 

Now denote the time of Wave 9 as 𝑡 = 2 (to simplify without loss of generality, we 

ignore that Wave 8 respondents who did not respond at Wave 9 were also included).  

The waves are combined without affecting the subsequent arguments.  The cross-

sectional population can be written 

𝒫2 = 𝒯1(2) ∪ 𝒯̅1(2) ∪ 𝒩2,      (A. 1) 

where 𝒯1(2) and 𝒯̅1(2) are the ‘survivors’ from 𝒯1 and 𝒯̅1 present at 𝑡 = 2, 

respectively, and 𝒩2 is the population of newcomers present at 𝑡 = 2 who were not 

present at 𝑡 = 1.  A survivor is taken to be someone who does not die or does not 

leave the UK. 

Finally, denote the time of the Covid-19 Study by 𝑡 = 3.  Dropping the superscripts 

and subscripts for quantities related to 𝑡 = 3, the cross-sectional population is 

𝒫 = 𝒯1(3) ∪ 𝒯̅1(3) ∪ 𝒩2(3) ∪ 𝒩,      (A. 2) 

where 𝒯1(3), 𝒯̅1(3) and 𝒩2(3) are survivors present at 𝑡 = 3, and 𝒩 is the 

population of newcomers present at 𝑡 = 3 not present at 𝑡 = 2. 
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B.2 UKHS Wave 9 as a BIGS Sample 

We begin by formulating UKHLS Wave 9 (𝑡 = 2) as BIGS design ℬ = {𝐹, Ω, ℋ} and 

relate its components to the target population. 

A. 𝐹 comprises everyone in 𝒯1 who survived and subsequently complied with 

UKHLS such that their survey weights are available at 𝑡 = 2 or would have 

counterfactually complied had they been selected instead. 

 

B. Ω comprises everyone in 𝒯1 who survived but have no survey weight 

available at 𝑡 = 2 because they did not comply with UKHLS or would have 

counterfactually non-complied had they been selected instead.  Furthermore, 

it includes those individuals in 𝒯̅1(2) ∪ 𝒩2 who are now part of households 

containing individuals in 𝒯1 according to the PAF. 

 

C. ℋ contains the links induced by the household structure at 𝑡 = 2 between 

𝑖 ∈ 𝐹 and 𝜅 ∈ Ω.  

The target population is straightforwardly ℱ ∪ Ω ⊆ 𝒫.  This excludes those individuals 

in 𝒯̅1(2) ∪ 𝒩2 not in households containing individuals in 𝒯1.  

Now the sample can be defined as follows: 

 

D. 𝑠 ⊂ ℱ contains the (directly sampled) individuals with survey weights 

available for analysis. 

 



64 

 

E. Ω𝑠 ⊂ Ω contains is the corresponding sample of (indirectly sampled) 

individuals without survey weights available. 

 

F. ℋ𝑠 ⊂ ℋ is the set of links between sample members in 𝑠 and those in Ω𝑠.  

Finally, note from section 2.4 that 𝑠 ∪ Ω𝑠 for UKHLS also excludes (i) OSMs with 

incomplete wave response, (ii) PSMs, and (iii) non-(minority) ethnic TSMs from the 

IEMB sample if they are not resident in HHs containing a weight to be shared, despite 

being in ℋ𝑠 ⊂ ℋ.  These individuals will figure in appendix A.4 if they survive. 

 

B.3 Shared Weight Estimation 

Before moving on to set up the SS and SIP-NR procedures introduced by Moore and 

Clarke (2024), we review the implicit assumptions behind the use of the main survey 

weights for analysing survey variable(s) 𝑌 at 𝑡 = 2. 

Letting random variable 𝑆𝑖 indicate whether unit 𝑖 ∈ ℱ appears in 𝑠, design-

based/finite-population inference about the population total 𝑇2 = ∑ 𝑦𝑖𝑖∈ℱ + ∑ 𝑦𝜅𝜅∈Ω  

for any survey variable 𝑌 can be based on 

𝑡2 = ∑ 𝑤𝑖𝑦𝑖𝑆𝑖

𝑖∈ℱ

+ ∑ 𝑤𝜅

𝜅∈Ω

𝑦𝜅𝑆𝜅,      (A. 3) 

where 𝑤𝑖 is the survey weight for unit 𝑖 and, for unit 𝜅, indirect selection indicator 

𝑆𝜅 = ∑ 𝑆𝑖 |𝛽(𝜅)|⁄𝑖∈𝛽(𝜅)  and shared weight 𝑤𝜅 = ∑ 𝑤𝑖 |𝛽(𝜅)|⁄𝑖∈𝛽(𝜅) . 

Similarly, for model-based super-population inference, let 𝜓𝑗(𝑌𝑗; 𝜃) be the score 

function based on the statistical model chosen by the analyst.  The score is taken to 
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satisfy 𝐸{𝜓𝑗(𝑌𝑗; 𝜃)} = 0 where 𝜃 is the true parameter value and expectation is with 

respect to the true infinite-population model.  Without loss of generality, we focus on 

the target population’s mean 𝜃 = 𝜇2 = 𝐸(𝑌𝑗) based on the simplest possible score 

𝜓𝑗(𝑌𝑗; 𝜇2) = 𝑌𝑗 − 𝜇2.  The pseudolikelihood estimator 𝜇̂ for 𝜇2 is then chosen such 

that 

∑ 𝑤𝑖(𝑌𝑗 − 𝜇̂)

𝑖∈𝑠

+ ∑ 𝑤𝜅

𝜅∈Ω𝑠

(𝑌𝜅 − 𝜇̂) = 0.      (A. 4) 

Both (A.3) and (A.4) will be unbiased for respective parameters 𝑇2 and 𝜇2 if the true 

survey weights are available for analysis (generally, only consistency holds but is 

unbiased for scores linear in parameters).  The pragmatic approach to variance 

estimation for (A.3) and (A.4) is based on the following assumption: 

Assumption A.1: Survey weights 𝑤𝑖 treated as known rather than estimated 

quantities and the shared weights 𝑤𝜅 can be treated as survey weights. 

The general form of variance estimator for (A.3) is complex and beyond the scope of 

this paper even under Assumption A.1.  However, some modification to the form of 

(A.3) and (A.4) in terms of clusters can be used to simplify calculations as follows: 

Clusters partition the population ℱ ∪ Ω indexed by 𝑐 ∈ {1, … , 𝐶} defined as follows: 

Definition A.1: The target population can be partitioned into 𝐶 clusters ℱ ∪

Ω  = ⋃ 𝛾𝑐
𝐶
𝑐=1  such that cluster 𝑐 contains a) all 𝑖 satisfying 𝛼(𝑖) = 𝛼𝑐, and b) 

all 𝜅 satisfying 𝛽(𝜅) = 𝛽𝑐, and 𝛾𝑐 = 𝛼𝑐 ∪ 𝛽𝑐 = {𝑖 ∈ ℱ: 𝛼(𝑖) = 𝛼𝑐} ∪ {𝜅 ∈

Ω: 𝛽(𝜅) = 𝛽𝑐}. 

Now, for example, (A.3) can be rewritten in terms of clusters as 
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𝑡2
𝑐𝑙𝑢𝑠 = ∑ 𝑆𝑐

𝐶

𝑐=1
𝑤𝑐 {∑ 𝑦𝑖

𝑖∈𝛽𝑐

+ ∑ 𝑦𝜅

𝜅∈𝛼𝑐

} = ∑ 𝑆𝑐 ∑ 𝑦𝑗𝑤𝑗
∗

𝑗∈𝛾𝑐

𝐶

𝑐=1
,      (A. 5) 

where random variable 𝑆𝑐 indicates whether cluster 𝑐 is selected, 𝑤𝑗
∗ = 𝑤𝑐 if 𝑗 ∈ 𝛾𝑐 

and 𝑤𝑐 = 1 𝜋𝑐⁄  is the weight based on the selection probability 𝜋𝑐 = Pr(𝑆𝑐 = 1) for 

direct selection (and response) of the units in 𝛽𝑐 (a short discussion of how it is 

calculated is given below).  

The variance formula can then be based on the design 𝒟 induced by the UKHLS 

sampling design (incorporating the main and boost surveys) with the subsequent 

response process treated as additional stages of selection with known selection 

probabilities.  Model-based inference can be based on the linearized estimator.   

However, the challenge for analysts is that, strictly speaking, they need to derive and 

calculate 𝜋𝑐.  The simplest approach to this is to assume that households remain intact 

and linked to the PAF addresses in which case 𝜋𝑐 can be based on the original 

household selection and household non-response probabilities. 

 

B.4 Covid-19 Study Inference 

The population 𝒫 at 𝑡 = 3  (the time of the Covid-19 Study) is defined in (A. 2).  Sample 

selection involves inviting each 𝑖 ∈ 𝑠 and 𝜅 ∈ Ω𝑠 to participate online at each wave.  

The additional complication comes from the appearance of unweighted ‘left-out’ 

individuals 𝑙 ∉ 𝑠 ∪ Ω𝑠 in the Covid-19 sample.  Despite knowing that these new 

individuals were at some point members of HHs containing UKHLS members, no 

information on HH membership is available for them because no attempt was made 
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to create ℋ𝑠 at 𝑡 = 3.  Hence, in contrast to appendix A.2, inference cannot be based 

on the theoretical results of indirect sampling or BIGS sampling. 

Instead, we propose a matching estimators based on an exchangeability assumption 

to be set out below.  Let 𝑠∗ denote the set of extra-sample linked individuals.  Each 

𝑙 ∈ 𝑠∗ ⊂ ℒ falls into one of the following three categories: 

1. Individuals in Ω but not Ω𝑠 who are now included by virtue of being members 

of households containing at least one Covid-19 respondent from 𝑠 ∪ Ω𝑠. 

2. Individuals in ℱ but not 𝑠 who are now included by virtue of being members 

of households containing at least one Covid-19 respondent from 𝑠 ∪ Ω𝑠. 

3. Surviving left-out individuals and newcomers ℒ ⊂ 𝒯̅1(3) ∪ 𝒩2(3) ∪ 𝒩 (from 

(A.2)) who are included by dint of being members of households containing 

at least one Covid-19 respondent in 𝑠 ∪ Ω𝑠.  As described at the end of 

appendix A.2 for UKHLS, the set of unweighted individuals also includes those 

present prior to wave 9 for whom it is not possible to share a weight using 

conventional sharing procedures (or for whom it would have counterfactually 

not been possible to share a weight). 

Note that 1-3 imply that the target population excludes left-out individuals and 

newcomers not in ℒ, that is, left-out and newcomer individuals who are not in 

households containing at least one Covid-19 respondent from ℱ ∪ Ω: the probability 

of being included in the Covid-19 Study is zero for these people. 
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Non-response to the Covid-19 Study 

All those for whom the contact details were available to UKHLS (even those without 

weights and even if details about HH links were not available about them) at the time 

of the Covid-19 Study were invited to participate in the Covid-19 Study.  The impact of 

refusals and no-replies is ignored in the following development. 

Subsequently, at the start of each wave of the Covid-19 Study, those who agreed to 

participate were sent a request and a link to the online questionnaire.  In the following 

development, we take the wave in question to be wave 1 without loss of generality. 

The response is assumed to satisfy the following assumption: 

Assumption A.2 (Missing at Random Questionnaire Non-response): For any 

survey variable 𝑌, the probability that individual 𝑖 ∈ ℱ ∪ Ω ∪ ℒ fills in the 

online questionnaire depends on the survey variables such that 

Pr(𝑅𝑖 = 1|𝑌𝑖 = 𝑦𝑖) > 0 depends non-trivially on 𝑦𝑖.  However, variables 𝑍 can 

be found satisfying Pr(𝑅𝑖 = 1|𝑌𝑗 = 𝑦𝑖, 𝑍𝑖 = 𝑧𝑖) = Pr(𝑅𝑖 = 1|𝑍𝑖 = 𝑧𝑗) = 𝜌𝑖  

exist and are known by and available to the analyst. 

Assumption A.2 allows us to estimate the response propensities provided suitable 

variables are available.  It also takes the response process to be the same across the 

three subpopulations ℱ, Ω and ℒ. 
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The problem 

Incorporating 𝑙 ∈ 𝑠∗ into the estimator requires further assumptions.  Consider the 

following biased estimator of the population total 𝑇 = ∑ 𝑦𝑖𝑖∈ℱ + ∑ 𝑦𝜅𝜅∈Ω + ∑ 𝑦𝑙𝑙∈ℒ  

of Covid-19 Study variable 𝑌 (note this is different to the 𝑌 in appendix A.3 which was 

from the main survey): 

𝑡𝑏𝑖𝑎𝑠𝑒𝑑 = ∑ 𝑤𝑖𝑦𝑖𝑆𝑖

𝑖∈ℱ

𝑅𝑖 + ∑ 𝑤𝜅

𝜅∈Ω

𝑦𝜅𝑆𝜅𝑅𝜅 + ∑ 𝑦𝑙

𝑙∈ℒ

𝐿𝑙𝑅𝑙 , 

where 𝑆𝑖, 𝑆𝜅, 𝑤𝑖 and 𝑤𝜅 are defined as in (A.3), 𝑅𝑖, 𝑅𝜅 and 𝑅𝑙  are response indicators 

for whether individuals 𝑖, 𝜅 and 𝑙, respectively, fill in the questionnaire, and 𝐿𝑙 =

𝐼(𝑙 ∈ 𝑠∗) indicates whether 𝑙 ∈ ℒ is selected into the unweighted left-out sample 𝑠∗ 

(indicator function 𝐼(𝐸) = 1 if event 𝐸 is true or zero otherwise). 

Estimator 𝑡𝑏𝑖𝑎𝑠𝑒𝑑 is appropriately named because the weights included in it do not 

adjust for non-random response to the invitation, and the unweighted sample 

individuals require a weight because they were not selected using simple random 

sampling. 

This motivates the ‘unbiased’ estimators of the form 

𝑡 = ∑ 𝑦𝑖𝑤𝑖
∗𝑆𝑖

𝑖∈ℱ

𝑅𝑖 + ∑ 𝑦𝜅𝑤𝜅
∗𝑆𝜅𝑅𝜅

𝜅∈Ω

+ ∑ 𝑦𝑙𝑤̂𝑙
∗𝐿𝑙

𝑙∈ℒ

𝑅𝑙,      (A. 6) 

for the population total, and estimator 𝜇̂ of 𝜇 = 𝐸(𝑌) the solution to 

∑ 𝑤𝑖
∗(𝑌𝑗 − 𝜇̂)

𝑖∈𝑠

+ ∑ 𝑤𝜅
∗

𝜅∈Ω𝑠

(𝑌𝜅 − 𝜇̂) + ∑ 𝑤̂𝑙
∗(𝑌𝑙 − 𝜇̂)

𝑙∈𝑠∗

= 0,      (A. 7) 
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where, in section3, 𝑤𝑗 is referred to as a selection weight, 𝑤𝑗
∗ = 𝑤𝑗 𝜌𝑗⁄  as an IP-NR 

weight, 𝑤̂𝑙
∗ = 𝑤𝑙 𝜌𝑙⁄  and 𝑤̂𝑙 is an estimator of the unknown true survey weight 𝑤̃𝑙. 

An alternative approach can be based on the simultaneous weighting approach 

proposed by Robbins et al. (2021, sec. 2.1.2).  They suppose sample 𝑠 ∪ Ω𝑠  = 𝑆1 is 

drawn from the target population with known probabilities, and 𝑠∗ = 𝑆2 is drawn from 

the same population with unknown probabilities.  Their simultaneous propensity 

score weight for 𝑖 ∈ 𝑆1 ∪ 𝑆2 is 

𝑤𝑖
∗ = (1 − 𝛾𝑖) 𝑤𝑖 𝜌𝑖⁄ ,      (A. 8) 

where we set 𝛾𝑖 = Pr(𝑖 ∈ 𝑆2|𝑖 ∈ 𝑆1 ∪ 𝑆2) = 0.5.  For 𝑙 ∈ 𝑆2 = 𝑠∗, the selection 

weight 𝑤𝑙 must also be ‘estimated’ as in (A.7). 

The SS and SIP-NR procedures are alternative ways of estimating 𝑤̃𝑙. 

 

Matching 

Both SS and SIP-NR procedures described in section 3 involve splitting the selection or 

IP-NR weight for 𝑗 ∈ 𝑠 ∪ Ω𝑠 with 𝑙 ∈ 𝑠∗.  Splitting the response propensities is 

straightforwardly allowed under assumption A.2.  However, splitting the selection 

weights requires a further assumption. 

Assumption A.3 (Exchangeable ignorable selection): The analyst chooses 

variables 𝑍 such that, for any pair 𝑙 ∈ ℒ and 𝑗 ∈ ℱ ∪ Ω, if 𝑍𝑙 = 𝑍𝑖 = 𝑧 then 

Pr(𝐿𝑙 = 1|𝑌𝑙, 𝑍𝑙 = 𝑧) = Pr(𝐿𝑙 = 1|𝑍𝑙 = 𝑧) = Pr(𝑆𝑗 = 1|𝑍𝑗 = 𝑧)

= Pr(𝑆𝑗 = 1|𝑌𝑗 , 𝑍𝑗 = 𝑧) 
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That is, had 𝑙 ∈ ℒ counterfactually been included in the PAF at Waves 1 or 6, it 

would have the same UKHLS compliance behaviour as those actually included 

with the same auxiliary variable characterisation. 

For example, (A.7) with known weights implies 𝐸(𝜇̂) = 𝜇 because 𝐸{𝑤𝑖
∗(𝑌𝑗 −

𝜇)𝑆𝑖𝑅𝑖} = 𝐸{𝑤𝜅
∗(𝑌𝜅 − 𝜇)𝑆𝜅𝑅𝜅} = 0, straightforwardly, and 

𝐸{𝑤𝑙
∗(𝑌𝑙 − 𝜇)𝑆𝑙𝑅𝑙} = 𝐸𝑍 {

Pr(𝐿𝑙 = 1|𝑍)

Pr(𝑆𝑙 = 1|𝑍)
𝐸(𝑌 − 𝜇|𝐿 = 1, 𝑍)} = 0, 

where the final equality holds under assumptions A.1, A.2 and A.3 (assumption A.2 

implies that the response process is the same for all three subpopulations and 

assumption A.3 that 𝐸(𝑌𝑙 − 𝜇|𝐿𝑙 = 1, 𝑍) = 𝐸(𝑌𝑙 − 𝜇|𝑍)).   

Similar arguments also hold for (A.7) in combination with (A.8) based on the 

simultaneous propensity score weights. 

 

Inference 

Restricting the discussion to model-based inference based on (A.7) and its 

generalisation, arguments given elsewhere (e.g. Chernozhukov et al. 2018, C3-C5) can 

be used demonstrate that the use of 𝑤̂𝑙 would lead to a small over-estimation of the 

standard error of 𝜇̂.   

To argue this, it is first necessary to make the further assumption that the matching 

estimator is a good predictor in large sample sizes. 
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Under assumption A.2, the response propensities 𝜌 can be estimated from the 

available data on 𝑗 ∈ 𝑠 ∪ Ω𝑠 or on 𝑗 ∈ 𝑠 ∪ Ω𝑠 ∪ 𝑠∗.  Treating  𝜌̂𝑗 as the true response 

probability is well known to over-estimate the standard errors (e.g. discussion of the 

‘IPWCC’ estimator by Tsiatis (2006, p.206)) and so is used in practice: conservative 

inference is worth the price of simplicity. 

Moreover, in terms of the splitting, we require the following assumption to hold: 

Assumption 4 (Good estimator): Matching leads to a regular estimator 

satisfying 

𝑤̂𝑙 = Pr(𝑆𝑙 = 1|𝑍𝑙 = 𝑧) + 𝑜𝑝(𝑛−1/2),      (A. 9) 

where 𝑛 = ∑ 𝑅𝑗𝑗∈𝑠∪Ω𝑠
 and 𝑜𝑝(𝑛−1/2) represents omitted variables converging 

to zero at rate √𝑛. 

Setting 𝑤̂𝑙 = 𝑤𝑙(𝑍; 𝜂̂), a Taylor series expansion of 𝜓𝑙(𝑌𝑙;  𝜇̂, 𝜂̂) = (𝑌𝑙 − 𝜇̂)𝑤𝑙(𝑍; 𝜂̂) 

around 𝜇 and 𝑤𝑙(𝑍𝑙; 𝜂) = Pr(𝑆𝑙 = 1|𝑍) depends on the additional term 

𝑛−1 ∑ 𝜕𝑤𝑙(𝑍; 𝜂) 𝜕𝜂⁄ (𝜂̂ − 𝜂) if 𝑤̂𝑙 is treated as an estimated parameter. If 𝜂̂ was 

estimated on a completely independent data sample, this additional term would be 

𝑜𝑝(𝑛−1/2) too because of (A.9) and so the asymptotic distribution of 𝜇̂ would be 

unaffected.  However, we know that 𝜂̂ is, in effect, estimated from data on donor 

individuals known to be clustered with those being donated to.  This situation is less 

acute than that for 𝜌̂𝑗, which is estimated from exactly the same sample individuals as 

those it is used for and, as already discussed, leads to an (in practice acceptable) over-

estimation of the standard errors, but we can expect not accounting for matching-

estimator imprecision to contribute less to standard-error over-estimation. 
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Note that the above argument is based on treating of 𝜓(𝑌; 𝜇̂, 𝜂̂) as independent and 

identically distributed random variables, but the same conclusion follows for inference 

based on the design-robust linearized variance estimator. 
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Appendix C: Evaluation results. 

  Table 1: COVID-19 Study wave 5 and wave 8 cross-sectional weight performance in 

recovering estimated means of main survey measured characteristics.  We present 

main survey weighted mean estimates (’wt. est.’; respectively columns (i) & (iv)); tests 

of differences between such estimates and estimates given COVID-19 Study IP-NR 

weights (columns (ii) & (v)); and tests of differences between such estimates and 

estimates given COVID-19 Study SS weights (columns (iii) & (vi)).  * equals P<0.05, ** 

equals P<0.01, *** equals P<0.001.   

 

Table 2: COVID-19 Study wave 5 and wave 8 cross-sectional weight performance in 

recovering estimated means of COVID-19 Study wave measured characteristics.  We 

present COVID-19 Study IP-NR weighted estimated means (’wt. est.’; respectively 

columns (i) & (iv)), tests of differences between such estimates and estimates given 

Mod1 weights (‘wt. diff.’; columns (ii) & (v)), and tests of differences between such 

estimates and estimates given SIP-NR weights (columns (iii) & (vii)).   * equals P<0.05, 

** equals P<0.01, *** equals P<0.001.  Note that differences exist between the two 

sets of main survey weighted estimates are due to a greater number of subject deaths 

by wave 8. 

 

Table 3: COVID-19 Study wave 2 and wave 5 longitudinal weight performance in 

recovering estimated means of main survey measured characteristics.  We present 

main survey weighted mean estimates (’wt. est.’; respectively columns (i) & (iv)); tests 
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of differences between such estimates and estimates given COVID-19 Study IP-NR 

weights (columns (ii) & (v)); and tests of differences between such estimates and 

estimates given COVID-19 Study SS weights (columns (iii) & (vi)).  * equals P<0.05, ** 

equals P<0.01, *** equals P<0.001. 

 

Table 4: COVID-19 Study wave 2 and wave 5 longitudinal weight performance in 

recovering estimated means of COVID-19 Study wave measured characteristics.  We 

present COVID-19 Study IP-NR weighted estimated means (’wt. est.’; respectively 

columns (i) & (iv)), tests of differences between such estimates and estimates given 

SS weights (‘wt. diff.’; columns (ii) & (v)), and tests of differences between such 

estimates and estimates given SIP-NR weights (columns (iii) & (vii)).   * equals P<0.05, 

** equals P<0.01, *** equals P<0.001.  Note that differences exist between the two 

sets of main survey weighted estimates are due to a greater number of subject deaths 

by wave 5. 
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Table 1 
 
 
 

 Wave 5 cross-sectional Wave 8 cross-sectional 

 Main  Covid   Main Covid  

  IP-NR SS  IP-NR SS 

 wt est. wt diff. wt. diff wt est. wt diff. wt. diff 

 (i) (iii) (iii) (iv) (v) (vi) 

In IPW model:      
Subjective financial 
situation (SFS): 
comfortable or OK  

0.717 -0.002 0.012* 0.716 0.005 0.014** 
(0.003)   (0.003)   

SFS: just about getting 
by 

0.203 -0.005 -0.013** 0.203 -0.008 -0.012** 
(0.002)   (0.002)   

SFS: finding it quite / 
very difficult 

0.081 0.007* 0.001 0.081 0.003 -0.002 
(0.002)   (0.002)   

Tenure: Owned 0.343 0.011* 0.029*** 0.343 0.010 0.028*** 
(0.003)   (0.003)   

Tenure: Mortgage 0.341 -
0.024*** 

-
0.021*** 

0.341 -
0.023*** 

-
0.020*** 

(0.003)   (0.003)   
Tenure: Rented 0.119 0.000 -0.008* 0.119 0.003 -0.007 

(0.002)   (0.002)   
Tenure: Social 
Housing 

0.195 0.012* 0.000 0.195 0.009* -0.001 
(0.002)   (0.002)   

Low skill occupation 0.362 0.003 0.001 0.362 0.005 0.002 
(0.004)   (0.004)   

Savings income? 0.372 -0.002 0.012* 0.372 -0.000 0.013* 
(0.003)   (0.003)   

Behind with some or 
all bills 

0.059 0.002 -0.009** 0.059 0.000 -0.008** 
(0.001)   (0.001)   

Not in IPW model:      
Income poverty 0.155 0.015*** 0.013** 0.155 0.006 0.004 

(0.002)   (0.002)   
Receives core benefit 0.054 0.001 -0.002 0.054 -0.001 -0.004 

(0.001)   (0.001)   
Visited GP 0.700 -0.005 -0.003 0.700 -0.004 -0.002 

(0.003)   (0.003)   
Smoker  
 

0.144 0.030*** 0.020*** 0.144 0.026*** 0.019*** 
(0.002)   (0.002)   

Hospital outpatient 0.433 -0.005 0.001 0.433 -0.005 -0.002 

(0.003)   (0.003)   
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Table 2 

 Wave 5 cross-sectional Wave 8 cross-sectional 

 IP-NR SS SIP-NR IP-NR SS SIP-NR 

 wt est. wt. diff wt diff. wt. est. wt diff. wt. diff 

 (i) (ii) (iii) (iv) (v) (vi) 

In IPW model:      
Subjective financial 
situation (SFS): 
comfortable or OK  

0.752 0.012* -0.001 0.751 0.009 -0.005 
(0.004)   (0.004)   

SFS: just about getting 
by 

0.190 -0.008 -0.002 0.194 -0.003 0.003 
(0.004)   (0.004)   

SFS: finding it 
quite/very difficult 

0.058 -0.004 0.003 0.055 -0.005 0.002 
(0.002)   (0.002)   

Employed? 0.594 -0.011 -0.001 0.600 -0.014* -0.000 
(0.005)   (0.005)   

Behind with some or 
all bills 

0.067 -0.009** 0.003 0.060 -0.006 0.003 
(0.002)   (0.002)   

Behind with housing 
payments 

0.065 -0.006 0.001 0.076 -0.005 0.002 
(0.002)   (0.004)   

HH type: Couple with 
children 

0.209 -0.004 -0.011* 0.197 -0.006 -0.009 
(0.004)   (0.004)   

HH type: Single, no 
children 

0.113 -0.003 0.003 0.111 -0.005 0.002 
(0.003)   (0.003)   

Covid test? 0.124 -0.001 0.001 0.278 -0.002 -0.011 
(0.003)   (0.004)   

Clinically vulnerable 0.415 0.009 0.008 0.436 0.006 0.012 
(0.005)   (0.005)   

Not in IPW model:      
Advised to shield 0.072 0.003 0.004 0.088 -0.001 0.003 

(0.003)   (0.003)   
Gave or received 
money 

0.119 -0.001 0.001 0.122 0.001 0.004 
(0.003)   (0.003)   

Less sleep than usual 0.185 -0.001 -0.001 0.200 -0.002 0.002 
(0.004)   (0.004)   

More depressed than 
usual 

0.221 -0.002 -0.002 0.250 -0.003 -0.000 
(0.004)   (0.004)   

More lonely than usual 0.062 -0.005 -0.003 0.082 -0.003 -0.002 

(0.002)   (0.003)   
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Table 3 
 

 Wave 2 longitudinal Wave 5 longitudinal 

 Main  Covid   Main Covid  

  IP-NR SS  IP-NR SS 

 wt est. wt diff. wt. diff wt est. wt diff. wt. diff 

 (i) (iii) (iii) (iv) (v) (vi) 

In IPW model:      
Subjective financial 
situation (SFS): 
comfortable or OK  

0.716 0.013* 0.023*** 0.717 0.000 0.011* 
(0.003)   (0.003)   

SFS: just about getting 
by 

0.203 -0.014** -
0.020*** 

0.203 -0.011* -
0.017*** 

(0.002)   (0.002)   
SFS: finding it quite / 
very difficult 

0.080 0.001 -0.003 0.080 0.010** 0.005 
(0.002)   (0.002)   

Tenure: Owned 0.344 0.008 0.023*** 0.344 -0.002 0.016** 
(0.003)   (0.003)   

Tenure: Mortgage 0.340 -
0.018*** 

-0.016** 0.340 -0.019** -
0.019*** 

(0.003)   (0.003)   
Tenure: Rented 0.119 0.007 -0.002 0.119 0.003 -0.005 

(0.002)   (0.002)   
Tenure: Social 
Housing 

0.195 0.003 -0.005 0.195 0.016*** 0.007 
(0.002)   (0.002)   

Low skill occupation 0.362 -0.002 0.001 0.362 0.013 0.010 
(0.004)   (0.004)   

Savings income? 0.372 -0.001 0.010 0.372 -
0.021*** 

-0.010 

(0.003)   (0.003)   
Behind with some or 
all bills 

0.059 -0.006* -
0.012*** 

0.059 0.002 -0.007** 

(0.001)   (0.001)   
Not in IPW model:      
Income poverty 0.155 0.011** 0.009* 0.155 0.018*** 0.018*** 

(0.002)   (0.002)   
Receives core benefit 0.054 0.006* 0.005 0.054 0.009** 0.006* 

(0.001)   (0.001)   
Visited GP 0.700 0.003 0.001 0.700 0.002 0.002 

(0.003)   (0.003)   
Smoker  
 

0.144 0.019*** 0.015*** 0.144 0.030*** 0.023*** 
(0.002)   (0.002)   

Hospital outpatient 0.433 0.003 0.005 0.433 -0.000 0.002 

(0.003)   (0.003)   
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Table 4:  

 Wave 2 longitudinal Wave 5 longitudinal 

 IP-NR SS SIP-NR IP-NR SS SIP-NR 

 wt est. wt. diff wt diff. wt. est. wt diff. wt. diff 

 (i) (ii) (iii) (iv) (v) (vi) 

In IPW model:      
Subjective financial 
situation (SFS): 
comfortable or OK  

0.744 0.007 -0.003 0.738 0.011 -0.003 
(0.004)   (0.005)   

SFS: just about getting 
by 

0.194 -0.005 0.000 0.206 -0.006 0.002 
(0.004)   (0.004)   

SFS: finding it 
quite/very difficult 

0.062 -0.002 0.002 0.056 -0.005 0.001 
(0.002)   (0.002)   

Employed? 0.608 -0.006 0.005 0.596 -0.008 0.000 
(0.005)   (0.005)   

Behind with some or all 
bills 

0.088 -0.006 0.003 0.075 -0.009* 0.003 
(0.003)   (0.003)   

Behind with housing 
payments 

0.075 -0.001 0.002 0.068 -0.004 0.001 
(0.003)   (0.003)   

HH type: Couple with 
children 

0.202 -0.003 -0.012* 0.201 0.001 -0.010 
(0.004)   (0.004)   

HH type: Single, no 
children 

0.117 -0.004 0.003 0.114 -0.005 -0.000 
(0.003)   (0.003)   

Covid test? 0.041 0.001 -0.000 0.116 0.000 0.000 
(0.002)   (0.003)   

Clinically vulnerable 0.385 0.005 0.006 0.407 0.004 0.004 
(0.005)   (0.005)   

Not in IPW model:      
Advised to shield 0.066 0.001 0.002 0.065 0.002 0.003 

(0.002)   (0.003)   
Gave or received 
money 

0.153 -0.002 0.003 0.118 -0.004 -0.000 
(0.003)   (0.003)   

Less sleep than usual 0.216 -0.003 -0.002 0.183 0.000 -0.001 
(0.004)   (0.004)   

More depressed than 
usual 

0.284 -0.002 0.003 0.220 -0.005 -0.000 
(0.004)   (0.004)   

More lonely than usual 0.078 -0.003 -0.002 0.062 -0.005 -0.006 

(0.003)   (0.003)   
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Figure 1: Box plots of absolute values of the tests of COVID-19 Study weights reported 

in Appendix Table 1, standardised by benchmark estimate standard deviations. In a), 

tests compare wave 5 cross-sectional dataset IP-NR (white bars) and SS (light grey 

bars) weighted estimates of main survey measured characteristics to main survey 

weighted benchmarks. In b), tests compare wave 8 cross-sectional dataset IP-NR and 

SS weighted estimates of main survey measured characteristics to main survey 

weighted benchmarks.  In plots, bars indicate the inter-quartile range, the line within 

the median value, and the cross the mean value.  Whiskers indicate minimum / 

maximum values, unless values exist that are smaller or larger than the inter-quartile 

range, in which case they indicate the smallest / largest value within this range, and 

the outlying values are indicated by circles. 

 

Figure 2: Box plots of absolute values of the tests of COVID-19 Study weights reported 

in Appendix Table 2, standardised by benchmark estimate standard deviations. In a), 

tests compare wave 5 cross-sectional dataset SS (light grey bars) and SIP-NR (dark grey 

bars) weighted estimates of COVID-19 Study measured characteristics to COVID-19 

Study IP-NR weighted benchmarks. In b), tests compare wave 8 cross-sectional dataset 

SS and SIP-NR weighted estimates of COVID-19 Study measured characteristics to 

COVID-19 Study IP-NR weighted benchmarks.  In plots, bars indicate the inter-quartile 

range, the line within the median value, and the cross the mean value.  Whiskers 

indicate minimum / maximum values, unless values exist that are smaller or larger 

than the inter-quartile range, in which case they indicate the smallest / largest value 

within this range, and the outlying values are indicated by circles.  
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Figure 3: Box plots of absolute values of the tests of COVID-19 Study weights reported 

in Appendix Table 3, standardised by benchmark estimate standard deviations. In a), 

tests compare wave 2 longitudinal dataset IP-NR (white bars) and SS (light grey bars) 

weighted estimates of main survey measured characteristics to main survey weighted 

benchmarks. In b), tests compare wave 5 longitudinal dataset IP-NR and SS weighted 

estimates of main survey measured characteristics to main survey weighted 

benchmarks.  In plots, bars indicate the inter-quartile range, the line within the median 

value, and the cross the mean value.  Whiskers indicate minimum / maximum values, 

unless values exist that are smaller or larger than the inter-quartile range, in which 

case they indicate the smallest / largest value within this range, and the outlying values 

are indicated by circles. 

 

Figure 4: Box plots of absolute values of the tests of COVID-19 Study weights reported 

in Appendix Table 4, standardised by benchmark estimate standard deviations. In a), 

tests compare wave 2 longitudinal dataset SS (light grey bars) and SIP-NR (dark grey 

bars) weighted estimates of COVID-19 Study measured characteristics to COVID-19 

Study IP-NR weighted benchmarks. In b), tests compare wave 5 longitudinal dataset 

SS and SIP-NR weighted estimates of COVID-19 Study measured characteristics to 

COVID-19 Study IP-NR weighted benchmarks. In plots, bars indicate the inter-quartile 

range, the line within the median value, and the cross the mean value.  Whiskers 

indicate minimum / maximum values, unless values exist that are smaller or larger 

than the inter-quartile range, in which case they indicate the smallest / largest value 

within this range, and the outlying values are indicated by circles.  
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