

Understanding Society
Working Paper Series

No. 2025 – 10

Data Quality: Wave 14 continuing and boost samples

Michaela Benzeval, Memory Mhembere and John Payne
Institute for Social and Economic Research, University of Essex

Non-technical summary

At wave 14, a general population boost sample was added to Understanding Society to increase sample sizes and population representativeness. This report investigates the data quality of the continuing and boost samples within wave 14. It assesses whether the data collected on the boost sample matches the quality of the data from ongoing sample members. It compares how complete the data collected were in terms of having information on all members of the household (adults and children), and whether levels of missingness in response to questions (because people refuse or say 'don't know') are systematically different. Generally, households in the boost sample are less complete i.e. we do not have data on all the potential adults and children, and respondents who complete the questions are more likely to have missing data in their answers.

Data Quality: Wave 14 continuing and boost samples

Michaela Benzeval, Memory Mhembere and John Payne (Institute for Social and

Economic Research, University of Essex)

Abstract: Understanding Society aims to provide users with the highest quality data

for research and policy purposes. To increase sample sizes and population

representativeness a general population boost sample (GPS2) was added at wave 14.

To contribute to our understanding of the value of GPS2 at wave 14 we have

investigated data quality of the data collected from continuing and boost samples

using the European Statistical System's five dimensions of quality. For some of the

dimensions, the quality of the data is identical as they were collected and processed

in the same way. However, there are differences between the two samples in terms

of the relevance, reliability and accuracy of the data that are investigated.

Keywords: data quality, longitudinal study, item missingness

JEL classification: C81, C83

Acknowledgements: Understanding Society is an initiative funded by the Economic

and Social Research Council and various Government Departments, with scientific

leadership by the Institute for Social and Economic Research, University of Essex, and

survey delivery by the National Centre for Social Research and Verian. The research

data are distributed by the UK Data Service.

Data citation: Institute for Social and Economic Research, University of Essex (2024).

Understanding Society: Waves 1-14, 2009-2023 and Harmonised BHPS: Waves 1-18,

1991-2009. [data collection]. 19th Edition. UK Data Service. SN: 6614,

http://doi.org/10.5255/UKDA-SN-6614-20

Corresponding author: Michaela Benzeval, Institute for Social and Economic

Research, University of Essex mbenzeval@essex.ac.uk

2

Contents

Introduction
Relevance4
Overall purpose of the GPS25
Outturn 5
Data collected for the GPS2
Accuracy and Reliability
Household completeness
Item missingness9
Data processing checks and error identification15
Checking income production16
Quality Control of Weights16
Data User Group (DUG)18
Post release issues
Timeliness and Punctuality
Comparability and Coherence19
Accessibility and Clarity19
Conclusion19
References

Introduction

Understanding Society aims to provide users with the highest quality data for research and policy purposes. To contribute to our understanding of the value of adding the General Population Sample 2, GPS2 (often described as the wave 14 boost sample), we have investigated various data quality issues comparing the continuing and GPS2 samples.

Assessment of data quality is generally based on the European Statistical System's (ESS) five dimensions of quality to investigate the fitness for purpose of statistical outputs.

- Relevance the degree to which statistics meet the current and potential needs
 of users.
- Accuracy and Reliability The closeness of the statistical output to the true
 value it is intended to measure.
- Timeliness and Punctuality The time lag between the reference period and the availability of the statistical output, and the consistency of the release schedule.
- Comparability and Coherence The ability to compare statistical outputs over time and across different regions or countries and the consistency of statistical outputs with other related data and information.
- Accessibility and Clarity the ease with which users can access the statistics and data and the clarity of the associated documentation.

We briefly review evidence from wave 14 on each of the criteria above, where appropriate comparing the data from the wave 14 continuing sample with the GPS2. Of course, for several of the criteria, e.g. timeliness, punctuality and accessibility, the processes and outputs for both samples within wave 14 are identical. Nevertheless, we provide brief information on how wave 14, as a whole, met these standards.

Relevance

There are two ways in which we should consider if GPS2 meets the needs of users now and in the future. First, whether the added sample achieved its goal of increasing sample size for future research. Second whether the content covered at wave 14 and for the boost sample, in particular, meets users' needs now and in the future.

Overall purpose of the GPS2

Understanding Society provides longitudinal data on a wide range of topics on people of all ages across the UK. This makes it the main contemporaneous source of evidence on the impact of societal or policy changes on the whole UK population and key subgroups within it. However, over time, even with the high year-on-year response rates Understanding Society achieves (Institute for Social and Economic Research, 2024a), cumulative attrition reduces the sample size (Cabrera-Álvarez and Lynn, 2025), and new immigrant populations who arrive in the country after the last sample was recruited (wave 6, 2014-15) are not represented. Attrition has created some biases in the study, which are generally effectively corrected with weighting (Cabrera-Álvarez and Lynn, 2023). However, inevitably over time the sample size for some groups was becoming too small for robust subgroup analysis. The boost sample therefore was designed to improve the precision of estimates based on Understanding Society. In the case of small population groups, this improvement could make such analysis possible and valuable. For larger population groups, precision will be improved, providing users and policy makers with greater confidence in the implications of estimates. To future proof the study, by maintain sample sizes and representativeness of key groups over time, we proposed a five yearly pattern of boost samples, alternating general population boost with ethnic minority boosts, going forward. In this, the first general population boost (GPS2), our goal was to add 10,000 households¹ to the study to provide users with the precision of estimates overall and among subgroups that were enjoyed in early waves.

We discussed our broad approach to a regular pattern of boost samples, and our specific plans for GPS2, with a wide range of stakeholders in advance for bidding for the necessary funding, which received widespread support. The proposal for GPS2 was part of our bid to ESRC for funding for waves 13-15 (submitted April 2019), which was peer reviewed and then assessed and approved by an ESRC funding panel consisting of a range of stakeholders.

Outturn

In the event the worldwide pandemic delayed GPS2 by 12 months to start in January 2022, as part of wave 14, and it started while the fieldwork agencies were rebuilding

¹ Originally, the boost sample was planned to be recruited at wave 13, and this outcome would have restored the study to wave 3 sample size, which we argued was appropriate, given expected attrition to maintain study sample levels over time, until the next boost was planned.

their labour force capacity. As a result, we had to adapt our design and, unfortunately, did not achieve full coverage of the issued households (Verian, 2024a). In the end, 6,776 households (26% of the issued sample) provided some data; of which 3,610 households (14% of the issued sample) provided data on all adults in the households and a further 2,151 households (8% of the issued sample) had data for at least one adult (Verian, 2024a). Data was obtained from 7,920 adults and 55 proxy interviews (64% of those eligible in responding households) and 421 youths aged 10-15 years (38% of those eligible in responding households) (ISER, 2024b). Of those GPS2 households issued to wave 15, at the time of writing², approximately 67% took part again (slightly below our 70% target).

GPS2 was therefore smaller than planned, and as a result the trajectory of sample sizes for future waves will be lower than predicted. Nevertheless, adding over 6,700 households and almost 8,000 adults to the sample has increased the sample size enabling more subsample analyses and greater precision across all research. Moreover, analysis shows that GPS2 has made the overall study more representative of the UK population (Mitchell et al 2025). Response rates in subsequent waves will decide the long-term value of the GPS2 boost in terms of the length of panel for which we can retain them and hence these benefits.

Data collected for the GPS2

In deciding on the content of the first wave of a boost sample we need to balance competing goals. It is generally believed that a short first wave interview may increase people's willingness to take part, although evidence suggests that modest variation in interview length does not influence subsequent retention (Lynn, 2014). For most users, matching the boost questionnaire with the questions asked of the existing sample in the same wave will maximise its initial utility. However, since drop out is highest between the first and second wave, considering what data would be most valuable if sample members only take part in their first wave is also a consideration. For example, including retrospective information (fertility, employment, partnerships, migration, etc) enables analyses of long-term histories in the widest sample possible. These considerations mean difficult judgements need to be made to balance the best response rates at the same time as collecting key information as early as possible. We discussed these

-

² Wave 15 is still in the field, although mainly complete, but therefore this response rate is not final.

matters as part of our funding process, and more broadly with key stakeholders. Most prospective users felt that having consistent data across all sample members in the initial wave (i.e. matched with the continuing sample) was most useful and least complex for the research community. A subset of users, however, who are particularly interested in researching event histories were vocal in their desire for full retrospective data to be collected across multiple domains.

To meet the needs of the majority of our users, we decided that the data collection instructions for the continuing and boost sample members at wave 14 should be as close as possible. With boost members additionally receiving the 'initial conditions' questions that new entrants at all waves received, slightly modified where appropriate to reflect the new entrant is part of a new sample household rather than existing one (Verian, 2024). At the same time, we began to develop a new instrument – the event history calendar – which, if evaluation criteria are met, will be deployed between waves to collect comprehensive histories from sample members with a more suitable design than a standard questionnaire implementation which should improve the quality and completeness of retrospective reporting of life events.

Accuracy and Reliability

A fundamental indicator of the accuracy of a dataset in being able to generalise to the general population is its response rate and bias. As noted above the overall response rate for GPS2 at wave 14 was relatively low (and below our target of 40%). Other reports in this series have investigated this in detail (Mitchell et al., 2025) compare unweighted estimates from GPS2 for key demographic characteristics with population benchmarks from the ONS and find a range of differences. However, it was never the intention that the boost sample should be employed alone without the other continuing Understanding Society samples. Mitchell and colleagues '(2025) analysis showed that combining GPS2 with the continuing sample makes the overall survey more representative of the UK population, particularly in terms of ethnic background, country of birth, sex, and several age and region categories. Moreover, we do not recommend that researchers use the data without using our inverse probability weights to correct for selection, non-response and attrition biases (ISER, 2024c). A new weights series has been produced to incorporate all samples including GPS2 in cross-sectional and longitudinal analyses going forward (ISER, 2024c).

Beyond these broad overarching statistics, crucial for the use of the data in research is how fully the different instruments have been completed. We have investigated this by comparing the continuing and boost samples' data at wave 14, in two broad ways:

- The extent to which we have complete information for all relevant household members in different scenarios
- The degree of missingness for different types of information within the surveys

Household completeness

One of the unique and valuable aspects of Understanding Society's design is having information on all household members. We investigated the extent to which this was achieved at wave 14.

Table 1 Completeness of data on household members, Wave 14

	Overall Wave 14	Wave 14	Wave 14 GPS2,			
		Continuing	hhorig 21 & 22			
	%	samples, hhorig 1-8	%			
		%				
Percentage of	55.6	62.3	37.5			
households where all						
adults in household						
were interviewed						
Percentage of	63.3	71.4	40.7			
households with a						
couple, where both						
partners were						
interviewed						
Percent of children	38.9	39.4	37.6			
aged 10-15 in						
responding						
household who						
completed the youth						
survey						
Percent of children aged 3/5/8 in responding household for whom at least some age						
specific child development data is available (specifically cdcond)						
Children aged 3						
years	72.7	79.7	63.2			
Children aged 5						
years	73.7	78.6	67.3			
Children aged 8						
years	73.7	79.7	63.9			

Unsurprisingly, full interview data is available in the different household scenarios shown in Table 1 in a higher percentage of continuing sample households than in the new GPS2 households. The gap is largest at the adult level. For example, in households with couples, GPS2 has a 30-percentage point lower level of complete data on couples than in continuing sample households. Early wave 15 (not complete) results show less than a fifth of non-responding adults in GPS2 took part at wave 15, which suggests the initial wave is critical for engaging participants in a longitudinal study. We are formally testing this in experiments at IP18 with different ways of starting a refreshment sample. Youth survey uptake is poor in both continuing and GPS2 households, which reflects general downward trends we have been facing with persuading adolescents to participate in the survey. This is now the focus of a Task & Finish group, which is developing a range of initiatives to improve response at this age, and as 16-year-olds transition into the adult survey (Burton, 2024).

The provision of child development data at ages 3, 5 or 8 years old is between 11 and 16 percentage points higher in the continuing than new boost sample. Data on children aged under 10 is collected from the adult identified in the household grid as the relevant 'responsible adult'. Missingness can therefore be for three reasons: no adults in the household take part, other adults but not the responsible adult participate, or the responsible adult does complete their interview but refused to answer the child development questions (or more likely the whole of the self-complete stage of interview in which these questions are located). The majority of missing child development data are because the responsible adult did not do their adult interview, but other adults in the household did (46% of missing data for aged 3 children), and the lowest cause of missingness is the responsible adult completing an interview but not doing the child development questions. This suggests, more broadly, we may be able to improve provision of these valuable data by better motivating responsible adults to provide such data or by revisiting our rules for who is asked such questions.

Item missingness

Item missingness can vary considerably by question type, and high missingness substantially reduces the analytical sample available to users. Missingness is generally either the result of sample members refusing (-2) or answering 'don't' know' (-1), or other missing (-9).

To provide a crude indicator of quality we investigated all 4301 variables in the indresp (adult interview) file; 840 variables (almost 20%) had more than 5% cases missing. This was lower for the GPS2 than the continuing sample. Many of these variables with high missingness were from looped questions where participants are asked about multiple jobs/health conditions/moves/qualifications/children etc. Indeed 1235 (almost 29%) of variables in the file have less than 10 valid cases as a result of such looped questions. To reduce the complexity of our core data files going forward, we have decided to provide some main or summary information from such looped questions (eg main job occupation; total number of health conditions) in indresp and include all the detailed records in separate long files.

Table 2 shows the level of missingness for a range of key variables across the adult questionnaire. In general, as you would expect, missingness is slightly higher in GPS2 than for the continuing sample, although where questions (e.g. legal marital status) are only asked of new entrants to the continuing sample, the levels of missingness are much more similar. The highest qualification variable (hiqual_dv) is a derived variable, and the question included feedforward information for continuing sample members, so the questionnaire simply checks for whether they have gained a qualification above those we currently have recorded. This reduces the interview lengths, helps ensure consistency and reduces missingness. An example of an 'ask all' question – employment status (jbstat) shows very low levels of missingness overall, with slightly lower levels among the boost sample. Reported net profit for the self-employed (jsprf) is well known as a topic that leads to under-reporting, and this is true in Understanding Society, with over a third of data missing (mostly refusal) and even more so among the boost sample.

In the questionnaire sample members are asked to provide information on the job title, industry etc, which is then coded by an automated dictionary (CASCOT) by Verian to international standard classifications. For continuing sample members, in general, previous job information is fed forward and only changes in job roles are coded. It is unsurprising therefore that there is higher missingness among GPS2 than continuing sample members for coded data.

The last four rows in Table 2 are variables taken from the self-complete component of the questionnaire, which tends to include more sensitive questions. It also includes some of the most heavily used parts of the questionnaire namely life satisfaction, the

Short-Form 12 (SF12) functional health scales, and the 12-item General Health Questionnaire (GHQ12). For sample members who complete on the web there is a seamless transition to this section to the questionnaire. For those sample members who have a face-to-face interview, they are asked if they wish to do the self-complete, and if so, the laptop is handed over to them. A small but sizable number of participants refuse the full self-complete (approx. 500), explaining the higher level of missingness for these questions.

Table 2 Percent missingness for key individual variables, adult questionnaire

Percent of non-response from those eligible for each question in the individual questionnaire variables: Wave 14

Description	variable	overall	continuing	GPS2,
		sample	sample,	hhorig 21
			hhorig 1-8	& 22
		%	%	%
Adult questionnaire				
Present legal marital status^	mlstat	0.70	0.59	0.71
Highest qualification ever	hiqual_dv	0.24	0.06	0.88
reported*				
Current economic activity	jbstat	0.37	0.38	0.33
S/emp: net profit in last yearly	jsprf	37.28	36.19	41.37
account				
Current job: verbatim data coded	jbsoc00	4.06	2.61	8.99
to SOC 2000*				
Donated money to charity	chargv	0.83	0.76	1.09
Frequency of travel by car	trcarfq	1.15	1.19	1.04
Current Smoker	smoker	0.25	0.21	0.38
Cares for handicapped/other in	aidhh	0.64	0.70	0.39
household				
12 items of GHQ+ (missingness		2.51-	1.97-2.26	4.36-4.62
range across the 12 items)	scghqa-l	2.79		
Satisfaction with life overall+	sclfsato	2.70	2.11	4.75
General health+	scsf1	2.08	1.52	4.02
Important who you are: Gender+	scwhorusex	2.83	2.26	4.79

[^]Only asked of new entrants in continuing sample

^{*}Continuing sample data includes feedforward information

⁺ Part of self-complete questionnaire (missingness, includes those who refused the whole self-complete instrument)

[#] Since only new information is coded, when new coding standards are introduced there is significant missingness for continuing sample members who do not change jobs.

[~] A wide range of derived income variables are produced for the study, and missing information is imputed. Variables _if show the cases where imputation is required.

The Understanding Society team does a significant amount of modelling to improve the income data provided by sample members and impute missing data so that the final derived variables are complete (Fisher et al, 2019). Table 3 provide evidence of the degree of missingness, and the value-added work carried out by the team, for income data before each wave is released. As can be seen 12% the continuing sample and 17% of GPS2 households required their income data to be fully imputed, but the level of missingness was very similar for individuals (around 14%). Nearly three-quarters of individuals, but only 40-50% of households require no imputation. This suggests that in the adult interview, participants do provide the data requested but given that not all adults in responding households take part, especially for GPS2, much more imputation is required.

Tables 3 Degree to which key income variables are imputed by Understanding Society team

Percent of variable imputed	Household gross income in the month before the interview fihhmngrs_if			Total per	sonal month fimngrs_if %	ly income
	Overall	Continuing hhorig 1-8	GPS2 hhorig 21 & 22	Overall	Continuing hhorig 1-8	GPS2 hhorig 21 & 22
No imputation	45.3	47.3	40.0	73.2	73.4	72.2
1–25	14.7	15.3	13.2	6.6	6.3	7.6
26–50	11	10.9	11.2	2.3	2.3	2.4
51–75	10.3	10.1	10.8	1.8	1.8	1.8
76–99	6.9	6.7	7.7	2.3	2.3	2.3
Fully imputed	11.8	9.8	17.2	13.9	13.9	13.6

Table 4 shows missingness for a number of measures collected at the household level. There are high levels of missingness for many household variables. The survey suggests that the person who mainly pays household bills answers these questions, although the extent to which this occurs is variable. House value is a particularly problematic variable, especially for the new boost sample. In the main this missingness is dominated by people who say that they don't know rather than refuse. We are currently investigating whether we can obtain this data from administrative sources rather than self-report.

Table 4 Percent item missingness for key household variables

Percent of non-response from those eligible for each question in key household variables: Wave 14				
	variable	overall sample %	continuin g sample, hhorig 1-	GPS2, hhorig 21 & 22
			8 %	%
Value of property: home owners*	hsval	38.22	35.85	44.60
Net amount of last rent payment	rent	13.63	13.92	13.08
Fuel used by household (electricity/gas/oil/other)	fuelhave1-	0.49	0.47	0.55

^{*}Values under £10,000 included here as missing

Finally, Table 5, examining missingness in the youth survey, shows the challenges of collecting data from this age group. Not only do more than half of adolescents not participate at all (Table 1), among those who do there is a high level of further missingness. This is truer for opinion and aspiration questions than for factual behaviours, especially for the GPS2 children. Since this is a paper question, the reasons behind the missingness are not known as generally questions are left blank. We have, subsequently, introduced an online version of the youth survey, to promote participation, by providing more ways of children answering the survey. It also enables us to tailor the content to different ages and will help us gain a better understanding of missingness for this population group in future.

Table 5 Percent item missingness for selected individual variables, youth questionnaire

Percent of missingness from	variable	overall	continuing	GPS2,
those who completed the youth		sample	sample,	hhorig 21
Questionnaire		%	hhorig 1-8	& 22
			%	%
Ever smoked	ypevrsmo	13.63	13.92	13.08
Importance of doing well in GCSE exams/National Qualifications	ypacvwell	38.22	35.85	44.60

Data processing checks and error identification

The Understanding Society team received the final data for wave 14 (continuing and GPS2 samples combined) from the fieldwork agency on 25 June 2024. It was deposited with UKDS on 3 November and released by them on 27 November 2024. This gives the team four months to carry out all checks and value-added activities such as imputing income and creating weights.

Before providing the data to the Understanding Society team, Verian performs various data processing tasks to:

- review all sample members to ensure continuing sample members are not classified as new entrants, correctly identify 'split-offs' (i.e. formation of new households), finalise outcome codes
- combine the face-to-face and web survey data together
- merge the small number of cases where a participant may have changed mode mid-interview
- identify duplicates and if found select the most recent interview
- combine variable formats across modes where questions required different formats in each mode
- check the youth survey, which as a paper questionnaire is scanned to capture the data, for inconsistencies and edit according to agreed rules.

Since all adult data collection is computer assisted there are a significant number of consistency and range checks to clarify data discrepancies with respondents as they arise. Verian therefore do very little cleaning or editing of the data after fieldwork (Verian, 2024b).

The Understanding Society data processing team carries out a wide range of checks (approx. 180) on receipt of the data to check whether the data received match that specified at the time the questionnaires is produced, to address inconsistencies in

household records, to ensure the integrity of the sample and to check on relationship consistency within households. Anonymised versions of all data files are them provided to the data release team who carry out a wide range of further checks (452) including reviewing the full sample and checking their household and individual outcome codes are correct and associated data is present, coding verbatim variables, investigating longitudinal consistencies, checking variable distributions, creating derived variables, and producing and cleaning metadata. Obviously for the boost and other new entrants, longitudinal consistency checks are not possible yet, but close checks of household structure and record integrity were required.

Checking income production

Understanding Society places considerable emphasis and resource to develop high quality income data (Fisher et al, 2019). The income production is complex and modular, with each module supported by an extensive set of code.

- Within each module, a large number of quality checks are embedded, followed by a final set of checks executed at the module's end.
- The within-module checks are for: sample inclusion verification; monitoring trends in missing values; checking for missingness in received derived variables; identification of outliers; benefit amounts plausibility; validation that questionnaire routing is working as intended; validation of summing of component variables to totals; graphical inspection on our tax benefit simulations; monitoring of trends in council tax linkage rates.
- The module end checks include: graphical inspection of the distribution of the key output variables e.g. we plot percentiles of earnings (net and gross); self-employment (net and gross); benefits; investment income. We then compare estimates across survey releases to check no major deviations. We also estimate growth rates across waves to identify any spurious income growth. We check our derived variables are complete after imputation and at the final processing stage.
- Periodically, we evaluate the overall quality of the income series by comparing to the official UK income estimates based on the Family Resources Survey.

Quality Control of Weights

The Understanding Society team produces a large number of cross-sectional and longitudinal weights. At wave 14, a new set of baseline weights were created to incorporate GPS2 going forward (ISER, 2024c). As part of the weighting process a comprehensive series of checks is carried out, both before and after the construction of the weights. These checks are designed to ensure the quality, internal consistency, and external validity of the weights and the weighted survey estimates. They are applied

systematically at different stages of the process and cover multiple dimensions of the data.

Before weight construction begins, a range of diagnostic checks is undertaken on response behaviour. These include tests of response outcomes across instruments, datasets, and waves, as well as examinations of their relationship to demographic characteristics such as age and household composition. The accuracy and completeness of mortality indicators are also reviewed at this stage, particularly because the weights are adjusted using national mortality records to ensure the sample reflects the living population at the time of the wave.

For nonresponse adjustments, statistical models are developed and subjected to a set of standard model diagnostics. These include assessments of multicollinearity, the need for interaction terms, and the consistency of model predictions and predictors across previous waves and related models. Outlying predictor values are flagged and reviewed, and model fit and stability are monitored closely. These checks are informed by a detailed knowledge of long-term patterns and trends within the data.

After weights are constructed, an extensive set of post-weighting quality control checks is carried out. These begin with internal consistency checks, confirming that weights are present only for cases that should be weighted, and ensuring logical relationships between different weight variables and between weight variables and relevant demographic variables. The distribution of each weight is examined, with particular attention to the variance. Unexpected shifts in variance across waves are tested for, especially if they are not associated with known events such as the addition of a new sample.

Weighted estimates of key variables are monitored over time to ensure plausible trends. Weighted distributions are also compared across instruments administered within the same wave, to ensure cross-instrument consistency. Relationships between the weights and key demographic variables, such as age, are reviewed to confirm they are consistent with expectations.

Checks are also carried out across geographical units—such as country or region of residence—to assess whether weighted estimates align with known distributions.

Marginal weighted distributions of post-stratified variables are validated against external benchmarks such as the Census or mid-year population estimates. Related variables

are also checked for directional consistency: for instance, if the weighted proportion of younger adults increases, a corresponding increase in the proportion of respondents in education is expected.

Finally, targeted and ad hoc reviews are undertaken to support the formal checks. These include the manual inspection of randomly selected households and cases with unusual weight values, as well as case-level follow-ups on any anomalies identified through automated procedures.

Data User Group (DUG)

A new initiative begun at wave 13 is to provide a group of users with early access to the data to run random checks on the data as they feel appropriate. They report their findings back to the team, and where possible corrections/improvements are included in that release. If not, they are noted for subsequent releases. For wave 14 DUG members reported 14 issues, which ranged from missing labels on specific variables that were corrected before release, and other broader issues re the large number of variables with high levels of missingness or significant differences in medians/ranges with variables with previous waves.

Post release issues

A sign of insufficient quality checking on released data is if the data need to be rereleased or errors are reported after the release of data by users (or otherwise spotted
by the team). For wave 14, three changes have been made to the released dataset since
release – two to the catalogue (metadata) and one to correct some data issues. Users
have reported 23 issues, via our user support team, about both data and
documentation/resources (eg code creator) associated with the wave 14 release. The
team are currently investigating to update at the next release.

Timeliness and Punctuality

Wave 14 data collection for all samples took place between January 2022 and May 2024. The data were released in a combined data release, on schedule, by the UK Data Service on 27 November 2024 (ISERb, 2024).

Comparability and Coherence

The wave 14 questionnaire, for both the continuing and new boost sample, builds on the previous questionnaires with most modules having been carried before and many measures being based on validated scales. Harmonised version of Understanding Society data can be created through code available at the Comparative Panel File. (Turek et al, 2021).

Accessibility and Clarity

Substantial documentation for Understanding Society, including all of the specific fieldwork documentation or the wave 14 continuing and boost fieldwork, are available on the Understanding Society website. Main survey - Understanding Society. While there is a continuous programme of improvement, the accessibility and quality of supporting documentation has been praised by users (Harding et al, 2022).

Conclusion

GPS2 increased the sample size and representativeness of the study overall at wave 14. In terms of the completeness of the data – both interview of all household members participation and item-missingness for specific variables, in general the GPS2 (the new sample) had poorer data than the continuing sample, which is unsurprising. For key measures where this was significant, we should review how we ask and motivate them for new sample members in the future. This should include efforts to improving participation among all household members in the initial wave once a household has responded.

1. References

Jonathan Burton (Ed) (2024) Improving response among adolescents and young adults in Understanding Society: report from a workshop, *Understanding Society Working Paper* 2024-07, Colchester: University of Essex

https://www.understandingsociety.ac.uk/research/publications/working-paper/understanding-society/2024-07/

Pablo Cabrera Alvarez and Peter Lynn (2023) Trends in panel attrition in Understanding Society: waves 1 to 13, *Understanding Society Working Paper 2023-16*, Colchester: University of Essex .

https://www.understandingsociety.ac.uk/research/publications/working-paper/understanding-society/2023-16/

Pablo Cabrera Alvarez and Peter Lynn (2025) Annual report on trends in panel attrition in Understanding Society, 2025 edition, *Understanding Society Working Paper 2025-01*, Colchester: University of Essex.

https://www.understandingsociety.ac.uk/research/publications/working-paper/understanding-society/2025-01/

Jasmine Mitchell, Pablo Cabrera-Álvarez and Peter Lynn (2025) Wave 14 Boost Sample Representativeness, *Understanding Society Working Paper 2025-9*, Colchester: University of Essex.

Paul Fisher, Laura Fumagalli, Nick Buck and Silvia Avram (2019) Understanding Society and its income data, *Understanding Society Working Paper 2019-08*, Colchester: University of Essex.

https://www.understandingsociety.ac.uk/research/publications/525786

Sarah Harding, Sarah Tazzyman, John Higton, Jennifer Roberts, Nigel Rice (2022) Evaluation of Understanding Society: Impact and views of data users Report by CFE Research for ESRC. <u>Evaluation of Understanding Society – UKRI</u>

Institute for Social and Economic Research (2024a). *Understanding Society: Waves 1-14, 2009-2023 and Harmonised BHPS: Waves 1-18, 1991-2009, User Guide, 30 October 2024*, Colchester: University of Essex https://www.understandingsociety.ac.uk/wp-content/uploads/documentation/user-

guides/6614_main_survey_user_guide_response_tables.pdf

Institute for Social and Economic Research, University of Essex (2024b). Understanding Society: Waves 1-14, 2009-2023 and Harmonised BHPS: Waves 1-18, 1991-2009. [data collection]. 19th Edition. UK Data Service. SN: 6614, http://doi.org/10.5255/UKDA-SN-6614-20.

Institute for Social and Economic Research (2024c). *Understanding Society: Waves 1-14, 2009-2023 and Harmonised BHPS: Waves 1-18, 1991-2009, User Guide, 30 October 2024*, Colchester: University of Essex.

Peter Lynn (2014). Longer interviews may not affect subsequent survey participation propensity. *Public Opinion Quarterly*, 78(2): 500-509.

Konrad Turek, Matthijs Kalmijn, Thomas Leopold, The Comparative Panel File:
Harmonized Household Panel Surveys from Seven Countries, *European Sociological Review*, Volume 37, Issue 3, June 2021, Pages 505–523, https://doi.org/10.1093/esr/jcab006

Verian (2024a) Understanding Society: Wave 14 boost technical report https://www.understandingsociety.ac.uk/documentation/mainstage/technical-reports/6614-main-survey-boost-technical-report-w14.pdf

Verian (2024b) Understanding Society: Wave 14 technical report

https://www.understandingsociety.ac.uk/wp-content/uploads/documentation/mainsurvey/technical-reports/6614-main-survey-technical-report-w14.pdf